新兴神经形态装置技术的最新进展

Jiyong Woo, Jeong Hun Kim, J. Im, Seung Eon Moon
{"title":"新兴神经形态装置技术的最新进展","authors":"Jiyong Woo, Jeong Hun Kim, J. Im, Seung Eon Moon","doi":"10.1002/aisy.202000111","DOIUrl":null,"url":null,"abstract":"The explosive growth of data and information has motivated technological developments in computing systems that utilize them for efficiently discovering patterns and gaining relevant insights. Inspired by the structure and functions of biological synapses and neurons in the brain, neural network algorithms that can realize highly parallel computations have been implemented on conventional silicon transistor‐based hardware. However, synapses composed of multiple transistors allow only binary information to be stored, and processing such digital states through complicated silicon neuron circuits makes low‐power and low‐latency computing difficult. Therefore, the attractiveness of the emerging memories and switches for synaptic and neuronal elements, respectively, in implementing neuromorphic systems, which are suitable for performing energy‐efficient cognitive functions and recognition, is discussed herein. Based on a literature survey, recent progress concerning memories shows that novel strategies related to materials and device engineering to mitigate challenges are presented to primarily achieve nonvolatile analog synaptic characteristics. Attempts to emulate the role of the neuron in various ways using compact switches and volatile memories are also discussed. It is hoped that this review will help direct future interdisciplinary research on device, circuit, and architecture levels of neuromorphic systems.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Recent Advancements in Emerging Neuromorphic Device Technologies\",\"authors\":\"Jiyong Woo, Jeong Hun Kim, J. Im, Seung Eon Moon\",\"doi\":\"10.1002/aisy.202000111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The explosive growth of data and information has motivated technological developments in computing systems that utilize them for efficiently discovering patterns and gaining relevant insights. Inspired by the structure and functions of biological synapses and neurons in the brain, neural network algorithms that can realize highly parallel computations have been implemented on conventional silicon transistor‐based hardware. However, synapses composed of multiple transistors allow only binary information to be stored, and processing such digital states through complicated silicon neuron circuits makes low‐power and low‐latency computing difficult. Therefore, the attractiveness of the emerging memories and switches for synaptic and neuronal elements, respectively, in implementing neuromorphic systems, which are suitable for performing energy‐efficient cognitive functions and recognition, is discussed herein. Based on a literature survey, recent progress concerning memories shows that novel strategies related to materials and device engineering to mitigate challenges are presented to primarily achieve nonvolatile analog synaptic characteristics. Attempts to emulate the role of the neuron in various ways using compact switches and volatile memories are also discussed. It is hoped that this review will help direct future interdisciplinary research on device, circuit, and architecture levels of neuromorphic systems.\",\"PeriodicalId\":7187,\"journal\":{\"name\":\"Advanced Intelligent Systems\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/aisy.202000111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

数据和信息的爆炸性增长推动了计算系统的技术发展,这些系统利用数据和信息有效地发现模式并获得相关的见解。受大脑中生物突触和神经元的结构和功能的启发,可以实现高度并行计算的神经网络算法已经在传统的硅晶体管硬件上实现。然而,由多个晶体管组成的突触只允许存储二进制信息,并且通过复杂的硅神经元电路处理这种数字状态使得低功耗和低延迟计算变得困难。因此,本文讨论了在实现神经形态系统中,新兴的记忆和开关对突触和神经元元素的吸引力,它们分别适用于执行能量高效的认知功能和识别。基于文献综述,最近关于记忆的进展表明,材料和器件工程相关的新策略可以缓解挑战,主要实现非易失性模拟突触特性。本文还讨论了利用紧凑开关和易失性存储器以各种方式模拟神经元作用的尝试。希望本文的综述将有助于指导未来神经形态系统在器件、电路和结构层面的跨学科研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Advancements in Emerging Neuromorphic Device Technologies
The explosive growth of data and information has motivated technological developments in computing systems that utilize them for efficiently discovering patterns and gaining relevant insights. Inspired by the structure and functions of biological synapses and neurons in the brain, neural network algorithms that can realize highly parallel computations have been implemented on conventional silicon transistor‐based hardware. However, synapses composed of multiple transistors allow only binary information to be stored, and processing such digital states through complicated silicon neuron circuits makes low‐power and low‐latency computing difficult. Therefore, the attractiveness of the emerging memories and switches for synaptic and neuronal elements, respectively, in implementing neuromorphic systems, which are suitable for performing energy‐efficient cognitive functions and recognition, is discussed herein. Based on a literature survey, recent progress concerning memories shows that novel strategies related to materials and device engineering to mitigate challenges are presented to primarily achieve nonvolatile analog synaptic characteristics. Attempts to emulate the role of the neuron in various ways using compact switches and volatile memories are also discussed. It is hoped that this review will help direct future interdisciplinary research on device, circuit, and architecture levels of neuromorphic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1