{"title":"出生前卵子发育停止:可能的进化优势和年龄相关的卵母细胞功能障碍之间的权衡?","authors":"J. Varghese, Monica Peter, M. Kamath","doi":"10.1142/s2661318221500079","DOIUrl":null,"url":null,"abstract":"Oogenesis in mammalian females, including humans, is arrested prior to birth. Females, therefore, are born with a limited number of primary oocytes. This is in direct contrast to males in whom spermatogenesis continues during the entire lifespan following puberty. Here, we discuss possible evolutionary advantages that this confers and contrast this with age-related decline in oocyte quality that results in diminished fertility with advancing maternal age. We believe that a better understanding of these processes would be helpful in developing strategies to preserve fertility as maternal age increases, especially in the context of the current demographic shift with more and more women seeking fertility treatment at advanced age.","PeriodicalId":34382,"journal":{"name":"Fertility Reproduction","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oogenesis Arrest Prior to Birth: A Trade-off between Possible Evolutionary Advantages and Age-Related Oocyte Dysfunction?\",\"authors\":\"J. Varghese, Monica Peter, M. Kamath\",\"doi\":\"10.1142/s2661318221500079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oogenesis in mammalian females, including humans, is arrested prior to birth. Females, therefore, are born with a limited number of primary oocytes. This is in direct contrast to males in whom spermatogenesis continues during the entire lifespan following puberty. Here, we discuss possible evolutionary advantages that this confers and contrast this with age-related decline in oocyte quality that results in diminished fertility with advancing maternal age. We believe that a better understanding of these processes would be helpful in developing strategies to preserve fertility as maternal age increases, especially in the context of the current demographic shift with more and more women seeking fertility treatment at advanced age.\",\"PeriodicalId\":34382,\"journal\":{\"name\":\"Fertility Reproduction\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fertility Reproduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2661318221500079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fertility Reproduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2661318221500079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Oogenesis Arrest Prior to Birth: A Trade-off between Possible Evolutionary Advantages and Age-Related Oocyte Dysfunction?
Oogenesis in mammalian females, including humans, is arrested prior to birth. Females, therefore, are born with a limited number of primary oocytes. This is in direct contrast to males in whom spermatogenesis continues during the entire lifespan following puberty. Here, we discuss possible evolutionary advantages that this confers and contrast this with age-related decline in oocyte quality that results in diminished fertility with advancing maternal age. We believe that a better understanding of these processes would be helpful in developing strategies to preserve fertility as maternal age increases, especially in the context of the current demographic shift with more and more women seeking fertility treatment at advanced age.