重复发挥支持向量机的游戏作为一种手段,自适应分类

C. Vineyard, Stephen J Verzi, C. James, J. Aimone, G. Heileman
{"title":"重复发挥支持向量机的游戏作为一种手段,自适应分类","authors":"C. Vineyard, Stephen J Verzi, C. James, J. Aimone, G. Heileman","doi":"10.1109/IJCNN.2015.7280729","DOIUrl":null,"url":null,"abstract":"The field of machine learning strives to develop algorithms that, through learning, lead to generalization; that is, the ability of a machine to perform a task that it was not explicitly trained for. An added challenge arises when the problem domain is dynamic or non-stationary with the data distributions or categorizations changing over time. This phenomenon is known as concept drift. Game-theoretic algorithms are often iterative by nature, consisting of repeated game play rather than a single interaction. Effectively, rather than requiring extensive retraining to update a learning model, a game-theoretic approach can adjust strategies as a novel approach to concept drift. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in an adaptive manner with repeated play to address concept drift, and show results of applying this algorithm to synthetic as well as real data.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"32 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Repeated play of the SVM game as a means of adaptive classification\",\"authors\":\"C. Vineyard, Stephen J Verzi, C. James, J. Aimone, G. Heileman\",\"doi\":\"10.1109/IJCNN.2015.7280729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of machine learning strives to develop algorithms that, through learning, lead to generalization; that is, the ability of a machine to perform a task that it was not explicitly trained for. An added challenge arises when the problem domain is dynamic or non-stationary with the data distributions or categorizations changing over time. This phenomenon is known as concept drift. Game-theoretic algorithms are often iterative by nature, consisting of repeated game play rather than a single interaction. Effectively, rather than requiring extensive retraining to update a learning model, a game-theoretic approach can adjust strategies as a novel approach to concept drift. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in an adaptive manner with repeated play to address concept drift, and show results of applying this algorithm to synthetic as well as real data.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"32 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

机器学习领域致力于开发算法,通过学习,导致泛化;也就是说,机器执行未经明确训练的任务的能力。当问题域是动态的或非平稳的,并且数据分布或分类随时间变化时,就会出现额外的挑战。这种现象被称为概念漂移。博弈论算法通常本质上是迭代的,由重复的游戏玩法而不是单一的交互组成。有效地,而不是需要大量的再训练来更新学习模型,博弈论方法可以调整策略作为一种新的方法来处理概念漂移。在本文中,我们提出了我们的支持向量机(SVM)游戏分类器的一个变体,该分类器可以自适应地使用重复游戏来解决概念漂移,并展示了将该算法应用于合成和真实数据的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Repeated play of the SVM game as a means of adaptive classification
The field of machine learning strives to develop algorithms that, through learning, lead to generalization; that is, the ability of a machine to perform a task that it was not explicitly trained for. An added challenge arises when the problem domain is dynamic or non-stationary with the data distributions or categorizations changing over time. This phenomenon is known as concept drift. Game-theoretic algorithms are often iterative by nature, consisting of repeated game play rather than a single interaction. Effectively, rather than requiring extensive retraining to update a learning model, a game-theoretic approach can adjust strategies as a novel approach to concept drift. In this paper we present a variant of our Support Vector Machine (SVM) Game classifier which may be used in an adaptive manner with repeated play to address concept drift, and show results of applying this algorithm to synthetic as well as real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1