German Andres Gutierrez Arias, Fernando Jiménez Díaz, Edwin Blasnilo Rúa Ramírez, Jorge Valcarcel Guzman
{"title":"熔丝制造3D打印热管的有限元热分析","authors":"German Andres Gutierrez Arias, Fernando Jiménez Díaz, Edwin Blasnilo Rúa Ramírez, Jorge Valcarcel Guzman","doi":"10.3311/PPME.16203","DOIUrl":null,"url":null,"abstract":"Nowadays, 3D printing Fused Filament Fabrication (FFF) currently presents obstacles to achieve high printing speeds, mainly due to the inability of the hotend to process the filament fast enough. This article presents the results of the thermodynamic flow analysis carried out on commercial designs of hotends, in the aim intending to identify the design parameters with a higher incidence in the mass flow of material output, so therefore, in the speed and quality of printing. Finite elements thermal analysis was carried out performed in order to characterize the effect of the materials and geometric design elements of the hotends. In this analysis the behavior of the commercial, the commercial melters' behavior and the effects caused by the changes in geometry and materials were obtained. The control variables were the chamber volume and the glass transition volume of each model. These results will be used as the design criteria of a new hotend.","PeriodicalId":43630,"journal":{"name":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","volume":"49 1","pages":"129-133"},"PeriodicalIF":1.3000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Thermal Analysis by Finite Elements of Hotends for 3D Printing by Fused Filament Fabrication\",\"authors\":\"German Andres Gutierrez Arias, Fernando Jiménez Díaz, Edwin Blasnilo Rúa Ramírez, Jorge Valcarcel Guzman\",\"doi\":\"10.3311/PPME.16203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, 3D printing Fused Filament Fabrication (FFF) currently presents obstacles to achieve high printing speeds, mainly due to the inability of the hotend to process the filament fast enough. This article presents the results of the thermodynamic flow analysis carried out on commercial designs of hotends, in the aim intending to identify the design parameters with a higher incidence in the mass flow of material output, so therefore, in the speed and quality of printing. Finite elements thermal analysis was carried out performed in order to characterize the effect of the materials and geometric design elements of the hotends. In this analysis the behavior of the commercial, the commercial melters' behavior and the effects caused by the changes in geometry and materials were obtained. The control variables were the chamber volume and the glass transition volume of each model. These results will be used as the design criteria of a new hotend.\",\"PeriodicalId\":43630,\"journal\":{\"name\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"volume\":\"49 1\",\"pages\":\"129-133\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3311/PPME.16203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PERIODICA POLYTECHNICA-MECHANICAL ENGINEERING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/PPME.16203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Thermal Analysis by Finite Elements of Hotends for 3D Printing by Fused Filament Fabrication
Nowadays, 3D printing Fused Filament Fabrication (FFF) currently presents obstacles to achieve high printing speeds, mainly due to the inability of the hotend to process the filament fast enough. This article presents the results of the thermodynamic flow analysis carried out on commercial designs of hotends, in the aim intending to identify the design parameters with a higher incidence in the mass flow of material output, so therefore, in the speed and quality of printing. Finite elements thermal analysis was carried out performed in order to characterize the effect of the materials and geometric design elements of the hotends. In this analysis the behavior of the commercial, the commercial melters' behavior and the effects caused by the changes in geometry and materials were obtained. The control variables were the chamber volume and the glass transition volume of each model. These results will be used as the design criteria of a new hotend.
期刊介绍:
Periodica Polytechnica is a publisher of the Budapest University of Technology and Economics. It publishes seven international journals (Architecture, Chemical Engineering, Civil Engineering, Electrical Engineering, Mechanical Engineering, Social and Management Sciences, Transportation Engineering). The journals have free electronic versions.