利用智能变压器和智能电表,加强存储系统提供的辅助服务

F. Sossan, Konstantina Christakou, M. Paolone, Xiang Gao, Marco Liserre
{"title":"利用智能变压器和智能电表,加强存储系统提供的辅助服务","authors":"F. Sossan, Konstantina Christakou, M. Paolone, Xiang Gao, Marco Liserre","doi":"10.1109/ISIE.2017.8001506","DOIUrl":null,"url":null,"abstract":"The Smart Transformer, a solid-state transformer with control and communication functionalities, can be the ideal solution for integrating storage into the grid. By leveraging the knowledge of the grid state of distribution grids thanks to smart meters and/or dedicated remote terminal units, in the paper, it is proposed a control strategy for a MV/LV smart transformer (ST) with integrated storage to achieve: i) dispatched-by-design operation of the LV network by controlling the ST active power set-point on the MV power converter, and ii) voltage regulation of both MV and LV networks by controlling the reactive power injections of both LV and MV converter. The former is achieved by dispatching the active power flow of the LV network according to a profile established the day before the operation, called dispatch plan, with the objective of reducing the amount of regulating power required to operate the grid. It is based on the use of forecast to compute a dispatch plan, and a tracking problem to compensate in real-time the mismatch between realization and dispatch plan by taking advantage of the storage capacity. The latter is achieved by using sensitivity coefficients, which are calculated from the state of the grid and integrating the information on the network topology. The problem formulation is given in the paper, and the proof-of-concept is shown by simulation using the IEEE 34 nodes test feeder and the CIGRE Low Voltage reference network.","PeriodicalId":6597,"journal":{"name":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","volume":"58 1","pages":"1715-1720"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing the provision of ancillary services from storage systems using smart transformer and smart meters\",\"authors\":\"F. Sossan, Konstantina Christakou, M. Paolone, Xiang Gao, Marco Liserre\",\"doi\":\"10.1109/ISIE.2017.8001506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Smart Transformer, a solid-state transformer with control and communication functionalities, can be the ideal solution for integrating storage into the grid. By leveraging the knowledge of the grid state of distribution grids thanks to smart meters and/or dedicated remote terminal units, in the paper, it is proposed a control strategy for a MV/LV smart transformer (ST) with integrated storage to achieve: i) dispatched-by-design operation of the LV network by controlling the ST active power set-point on the MV power converter, and ii) voltage regulation of both MV and LV networks by controlling the reactive power injections of both LV and MV converter. The former is achieved by dispatching the active power flow of the LV network according to a profile established the day before the operation, called dispatch plan, with the objective of reducing the amount of regulating power required to operate the grid. It is based on the use of forecast to compute a dispatch plan, and a tracking problem to compensate in real-time the mismatch between realization and dispatch plan by taking advantage of the storage capacity. The latter is achieved by using sensitivity coefficients, which are calculated from the state of the grid and integrating the information on the network topology. The problem formulation is given in the paper, and the proof-of-concept is shown by simulation using the IEEE 34 nodes test feeder and the CIGRE Low Voltage reference network.\",\"PeriodicalId\":6597,\"journal\":{\"name\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"volume\":\"58 1\",\"pages\":\"1715-1720\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2017.8001506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 26th International Symposium on Industrial Electronics (ISIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2017.8001506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能变压器是一种具有控制和通信功能的固态变压器,可以成为将存储集成到电网中的理想解决方案。本文利用智能电表和/或专用远程终端单元对配电网电网状态的了解,提出了一种集成存储的中压/低压智能变压器(ST)控制策略,以实现:1)通过控制中压变流器上的ST有功功率设定点,实现低压电网的设计调度运行;2)通过控制中压变流器和中压变流器的无功注入,实现中压和低压电网的电压调节。前者是根据运行前一天建立的调度计划,对低压电网的有功潮流进行调度,目的是减少电网运行所需的调节功率。该算法基于预测计算调度计划,并利用存储容量实时补偿实现与调度计划不匹配的跟踪问题。后者是通过利用敏感系数来实现的,该敏感系数是根据网格的状态计算的,并综合了网络拓扑信息。本文给出了问题的表述,并利用IEEE 34节点测试馈线和CIGRE低压参考网络进行了仿真验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing the provision of ancillary services from storage systems using smart transformer and smart meters
The Smart Transformer, a solid-state transformer with control and communication functionalities, can be the ideal solution for integrating storage into the grid. By leveraging the knowledge of the grid state of distribution grids thanks to smart meters and/or dedicated remote terminal units, in the paper, it is proposed a control strategy for a MV/LV smart transformer (ST) with integrated storage to achieve: i) dispatched-by-design operation of the LV network by controlling the ST active power set-point on the MV power converter, and ii) voltage regulation of both MV and LV networks by controlling the reactive power injections of both LV and MV converter. The former is achieved by dispatching the active power flow of the LV network according to a profile established the day before the operation, called dispatch plan, with the objective of reducing the amount of regulating power required to operate the grid. It is based on the use of forecast to compute a dispatch plan, and a tracking problem to compensate in real-time the mismatch between realization and dispatch plan by taking advantage of the storage capacity. The latter is achieved by using sensitivity coefficients, which are calculated from the state of the grid and integrating the information on the network topology. The problem formulation is given in the paper, and the proof-of-concept is shown by simulation using the IEEE 34 nodes test feeder and the CIGRE Low Voltage reference network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
32nd IEEE International Symposium on Industrial Electronics, ISIE 2023, Helsinki, Finland, June 19-21, 2023 Fuel Cell prognosis using particle filter: application to the automotive sector Bi-Level Distribution Network Planning Integrated with Energy Storage to PV-Connected Network Distributed adaptive anti-windup consensus tracking of networked systems with switching topologies Deep Belief Network and Dempster-Shafer Evidence Theory for Bearing Fault Diagnosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1