{"title":"具有倾斜压力梯度和速度滑移边界条件的多孔通道瞬态流动","authors":"B. Jha, Zainab Sa’id Yunus","doi":"10.2478/ijame-2022-0006","DOIUrl":null,"url":null,"abstract":"Abstract A transient flow formation of an incompressible fluid through a horizontal porous channel assuming a ramped pressure gradient is considered with the velocity slip boundary conditions. The flow is a laminar flow caused by ramped pressure gradient along the flow direction. The equation governing the flow is modeled, and solved by the Laplace transformation technique to obtain a semi-analytical solution under slip boundary conditions. It was noted that the flow velocity increases as the slip parameter is increased.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"39 1","pages":"78 - 90"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transient Flow Through a Porous Channel with Ramped Pressure Gradient and Velocity Slip Boundary Condition\",\"authors\":\"B. Jha, Zainab Sa’id Yunus\",\"doi\":\"10.2478/ijame-2022-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A transient flow formation of an incompressible fluid through a horizontal porous channel assuming a ramped pressure gradient is considered with the velocity slip boundary conditions. The flow is a laminar flow caused by ramped pressure gradient along the flow direction. The equation governing the flow is modeled, and solved by the Laplace transformation technique to obtain a semi-analytical solution under slip boundary conditions. It was noted that the flow velocity increases as the slip parameter is increased.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"39 1\",\"pages\":\"78 - 90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijame-2022-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijame-2022-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Transient Flow Through a Porous Channel with Ramped Pressure Gradient and Velocity Slip Boundary Condition
Abstract A transient flow formation of an incompressible fluid through a horizontal porous channel assuming a ramped pressure gradient is considered with the velocity slip boundary conditions. The flow is a laminar flow caused by ramped pressure gradient along the flow direction. The equation governing the flow is modeled, and solved by the Laplace transformation technique to obtain a semi-analytical solution under slip boundary conditions. It was noted that the flow velocity increases as the slip parameter is increased.
期刊介绍:
INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.