{"title":"低功耗、可靠柔性电子器件的设计、自动化和测试","authors":"Tsung-Ching Huang, Jiun-Lang Huang, K. Cheng","doi":"10.1561/1000000039","DOIUrl":null,"url":null,"abstract":"Flexible electronics are emerging as an alternative to conventional Si electronics for large-area low-cost applications such as smart sensors, disposable RFID tags, and solar cells. By utilizing inexpensive manufacturing methods such as ink-jet printing and roll-to-roll imprinting, flexible electronics can be made on low-cost plastic films just like printing newspapers. However, the key elements of flexible electronics, thin-film transistors TFTs, have slower operating speeds and are less reliable than their Si electronics counterparts. Furthermore, depending on the material property, TFTs are usually mono-type - either p- or n-type - devices. Making air-stable complementary TFT circuits is very challenging or not applicable to most TFT technologies. Existing design methodologies for Si electronics, therefore, cannot be directly applied to flexible electronics. Other inhibiting factors such as high supply voltage, large process variation, and lack of trustworthy device modeling also make designing larger-scale and robust TFT circuits a challenge.The objective of this article is to provide an in-depth overview of flexible electronics from their applications, manufacturing processes, device characteristics, to circuit and system design solutions. We first introduce the low-cost fabrication methods for flexible electronics, including ink-jet printing, screen printing, and gravure printing. The device characteristics and compact modeling of four major types of TFT technologies, including hydrogenated amorphous silicon a-Si:H TFT, polymer organic TFT, self-assembly monolayer SAM organic TFT, and metal oxide TFT, will be illustrated. We will then give an overview of digital and analog circuit design from basic logic gates to a microprocessor, as well as design automation tools and methods, for designing flexible electronics. In order to accurately predict the time-dependent degradation of TFT circuits, we describe a reliability simulation framework that can predict the TFT circuits' performance degradation under bias-stress. This framework has been validated using the amorphous-silicon a-Si TFT scan driver for TFT-LCD displays. Finally, we will give an overview of flexible thin-film photovoltaics using different materials including amorphous silicon, CdTe, CIGS , and organic solar cells.","PeriodicalId":42137,"journal":{"name":"Foundations and Trends in Electronic Design Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Design, Automation, and Test for Low-Power and Reliable Flexible Electronics\",\"authors\":\"Tsung-Ching Huang, Jiun-Lang Huang, K. Cheng\",\"doi\":\"10.1561/1000000039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexible electronics are emerging as an alternative to conventional Si electronics for large-area low-cost applications such as smart sensors, disposable RFID tags, and solar cells. By utilizing inexpensive manufacturing methods such as ink-jet printing and roll-to-roll imprinting, flexible electronics can be made on low-cost plastic films just like printing newspapers. However, the key elements of flexible electronics, thin-film transistors TFTs, have slower operating speeds and are less reliable than their Si electronics counterparts. Furthermore, depending on the material property, TFTs are usually mono-type - either p- or n-type - devices. Making air-stable complementary TFT circuits is very challenging or not applicable to most TFT technologies. Existing design methodologies for Si electronics, therefore, cannot be directly applied to flexible electronics. Other inhibiting factors such as high supply voltage, large process variation, and lack of trustworthy device modeling also make designing larger-scale and robust TFT circuits a challenge.The objective of this article is to provide an in-depth overview of flexible electronics from their applications, manufacturing processes, device characteristics, to circuit and system design solutions. We first introduce the low-cost fabrication methods for flexible electronics, including ink-jet printing, screen printing, and gravure printing. The device characteristics and compact modeling of four major types of TFT technologies, including hydrogenated amorphous silicon a-Si:H TFT, polymer organic TFT, self-assembly monolayer SAM organic TFT, and metal oxide TFT, will be illustrated. We will then give an overview of digital and analog circuit design from basic logic gates to a microprocessor, as well as design automation tools and methods, for designing flexible electronics. In order to accurately predict the time-dependent degradation of TFT circuits, we describe a reliability simulation framework that can predict the TFT circuits' performance degradation under bias-stress. This framework has been validated using the amorphous-silicon a-Si TFT scan driver for TFT-LCD displays. Finally, we will give an overview of flexible thin-film photovoltaics using different materials including amorphous silicon, CdTe, CIGS , and organic solar cells.\",\"PeriodicalId\":42137,\"journal\":{\"name\":\"Foundations and Trends in Electronic Design Automation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foundations and Trends in Electronic Design Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1561/1000000039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations and Trends in Electronic Design Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/1000000039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Design, Automation, and Test for Low-Power and Reliable Flexible Electronics
Flexible electronics are emerging as an alternative to conventional Si electronics for large-area low-cost applications such as smart sensors, disposable RFID tags, and solar cells. By utilizing inexpensive manufacturing methods such as ink-jet printing and roll-to-roll imprinting, flexible electronics can be made on low-cost plastic films just like printing newspapers. However, the key elements of flexible electronics, thin-film transistors TFTs, have slower operating speeds and are less reliable than their Si electronics counterparts. Furthermore, depending on the material property, TFTs are usually mono-type - either p- or n-type - devices. Making air-stable complementary TFT circuits is very challenging or not applicable to most TFT technologies. Existing design methodologies for Si electronics, therefore, cannot be directly applied to flexible electronics. Other inhibiting factors such as high supply voltage, large process variation, and lack of trustworthy device modeling also make designing larger-scale and robust TFT circuits a challenge.The objective of this article is to provide an in-depth overview of flexible electronics from their applications, manufacturing processes, device characteristics, to circuit and system design solutions. We first introduce the low-cost fabrication methods for flexible electronics, including ink-jet printing, screen printing, and gravure printing. The device characteristics and compact modeling of four major types of TFT technologies, including hydrogenated amorphous silicon a-Si:H TFT, polymer organic TFT, self-assembly monolayer SAM organic TFT, and metal oxide TFT, will be illustrated. We will then give an overview of digital and analog circuit design from basic logic gates to a microprocessor, as well as design automation tools and methods, for designing flexible electronics. In order to accurately predict the time-dependent degradation of TFT circuits, we describe a reliability simulation framework that can predict the TFT circuits' performance degradation under bias-stress. This framework has been validated using the amorphous-silicon a-Si TFT scan driver for TFT-LCD displays. Finally, we will give an overview of flexible thin-film photovoltaics using different materials including amorphous silicon, CdTe, CIGS , and organic solar cells.
期刊介绍:
Foundations and Trends® in Electronic Design Automation publishes survey and tutorial articles in the following topics: - System Level Design - Behavioral Synthesis - Logic Design - Verification - Test - Physical Design - Circuit Level Design - Reconfigurable Systems - Analog Design Each issue of Foundations and Trends® in Electronic Design Automation comprises a 50-100 page monograph written by research leaders in the field.