训练中和训练后的推广方法:ppar - α和ppar - γ激动剂的情况

B. K. Hedayati, Guangyuan Guangyuan, A. Jooya, N. Dimopoulos
{"title":"训练中和训练后的推广方法:ppar - α和ppar - γ激动剂的情况","authors":"B. K. Hedayati, Guangyuan Guangyuan, A. Jooya, N. Dimopoulos","doi":"10.1109/IJCNN.2015.7280560","DOIUrl":null,"url":null,"abstract":"In this paper, the effects of regularization on the generalization capabilities of a neural network model are analyzed. We compare the performance of Levenberg-Marquardt and Bayesian Regularization algorithms with and without post-training regularization. We show that although Bayesian Regularization performs slightly better than Levenberg-Marquardt, the model trained using Levenberg-Marquardt holds more information about the data set which by proper post-processing regularization can be extracted. This post-processing regularization imposes smoothness and similarity.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"28 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"In-training and post-training generalization methods: The case of ppar — α and ppar — γ agonists\",\"authors\":\"B. K. Hedayati, Guangyuan Guangyuan, A. Jooya, N. Dimopoulos\",\"doi\":\"10.1109/IJCNN.2015.7280560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the effects of regularization on the generalization capabilities of a neural network model are analyzed. We compare the performance of Levenberg-Marquardt and Bayesian Regularization algorithms with and without post-training regularization. We show that although Bayesian Regularization performs slightly better than Levenberg-Marquardt, the model trained using Levenberg-Marquardt holds more information about the data set which by proper post-processing regularization can be extracted. This post-processing regularization imposes smoothness and similarity.\",\"PeriodicalId\":6539,\"journal\":{\"name\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"28 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2015.7280560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文分析了正则化对神经网络模型泛化能力的影响。我们比较了Levenberg-Marquardt和Bayesian正则化算法在训练后正则化和没有训练后正则化的情况下的性能。我们表明,尽管贝叶斯正则化的性能略好于Levenberg-Marquardt,但使用Levenberg-Marquardt训练的模型保留了更多关于数据集的信息,这些信息通过适当的后处理正则化可以提取出来。这种后处理正则化增加了平滑性和相似性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-training and post-training generalization methods: The case of ppar — α and ppar — γ agonists
In this paper, the effects of regularization on the generalization capabilities of a neural network model are analyzed. We compare the performance of Levenberg-Marquardt and Bayesian Regularization algorithms with and without post-training regularization. We show that although Bayesian Regularization performs slightly better than Levenberg-Marquardt, the model trained using Levenberg-Marquardt holds more information about the data set which by proper post-processing regularization can be extracted. This post-processing regularization imposes smoothness and similarity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1