Y. Otsuka, Y. Okamoto, H. Y. Akiyama, K. Umekita, Y. Tachibana, S. Kuwabata
{"title":"光电诱导形成多噻吩/TiO2纳米杂化异质结薄膜在太阳能电池中的应用","authors":"Y. Otsuka, Y. Okamoto, H. Y. Akiyama, K. Umekita, Y. Tachibana, S. Kuwabata","doi":"10.1021/JP7099064","DOIUrl":null,"url":null,"abstract":"Formation of nanostructured polythiophene/TiO2 heterojunction films, using photoinduced polymerization of thiophene inside TiO2 nanopores, was investigated. The resultant film possesses nanohybridization and electronic connection within the TiO2 nanoporous domain. Photopolymerization proceeded in three stages: (i) photoexcitation of bithiophene covalently attached to the TiO2 surface, (ii) an electron injection reaction from the surface attached thiophene to the TiO2, and (iii) an electron transfer from a thiophene reactant in an electrolyte to the surface-attached bithiophene. Initial rapid photopolymerization and subsequent slow polymer growth were explained by analysis of a series of experiments, e.g., with respect to light irradiation time, applied bias, electrolyte types, thiophene reactant type, and their morphology. Electrochemical measurements for the bithiophene adsorbed on TiO2 revealed a wide distribution of redox potentials. This was explained by influence of the local electric field on the TiO2 surface in addition to strong interaction between the surfacebound bithiophene and the TiO2. The nanohybrid film was applied to a sensitized-type photoelectrochemical solar cell, substantiating direct application of the nanohybrid film to electronic devices. The solar cell performance was closely associated with the interfacial structure in the nanohybrid film and the photopolymerization degree.","PeriodicalId":58,"journal":{"name":"The Journal of Physical Chemistry ","volume":"1 1","pages":"4767-4775"},"PeriodicalIF":2.7810,"publicationDate":"2008-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Photoinduced Formation of Polythiophene/TiO2 Nanohybrid Heterojunction Films for Solar Cell Applications\",\"authors\":\"Y. Otsuka, Y. Okamoto, H. Y. Akiyama, K. Umekita, Y. Tachibana, S. Kuwabata\",\"doi\":\"10.1021/JP7099064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Formation of nanostructured polythiophene/TiO2 heterojunction films, using photoinduced polymerization of thiophene inside TiO2 nanopores, was investigated. The resultant film possesses nanohybridization and electronic connection within the TiO2 nanoporous domain. Photopolymerization proceeded in three stages: (i) photoexcitation of bithiophene covalently attached to the TiO2 surface, (ii) an electron injection reaction from the surface attached thiophene to the TiO2, and (iii) an electron transfer from a thiophene reactant in an electrolyte to the surface-attached bithiophene. Initial rapid photopolymerization and subsequent slow polymer growth were explained by analysis of a series of experiments, e.g., with respect to light irradiation time, applied bias, electrolyte types, thiophene reactant type, and their morphology. Electrochemical measurements for the bithiophene adsorbed on TiO2 revealed a wide distribution of redox potentials. This was explained by influence of the local electric field on the TiO2 surface in addition to strong interaction between the surfacebound bithiophene and the TiO2. The nanohybrid film was applied to a sensitized-type photoelectrochemical solar cell, substantiating direct application of the nanohybrid film to electronic devices. The solar cell performance was closely associated with the interfacial structure in the nanohybrid film and the photopolymerization degree.\",\"PeriodicalId\":58,\"journal\":{\"name\":\"The Journal of Physical Chemistry \",\"volume\":\"1 1\",\"pages\":\"4767-4775\"},\"PeriodicalIF\":2.7810,\"publicationDate\":\"2008-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry \",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/JP7099064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry ","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/JP7099064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Photoinduced Formation of Polythiophene/TiO2 Nanohybrid Heterojunction Films for Solar Cell Applications
Formation of nanostructured polythiophene/TiO2 heterojunction films, using photoinduced polymerization of thiophene inside TiO2 nanopores, was investigated. The resultant film possesses nanohybridization and electronic connection within the TiO2 nanoporous domain. Photopolymerization proceeded in three stages: (i) photoexcitation of bithiophene covalently attached to the TiO2 surface, (ii) an electron injection reaction from the surface attached thiophene to the TiO2, and (iii) an electron transfer from a thiophene reactant in an electrolyte to the surface-attached bithiophene. Initial rapid photopolymerization and subsequent slow polymer growth were explained by analysis of a series of experiments, e.g., with respect to light irradiation time, applied bias, electrolyte types, thiophene reactant type, and their morphology. Electrochemical measurements for the bithiophene adsorbed on TiO2 revealed a wide distribution of redox potentials. This was explained by influence of the local electric field on the TiO2 surface in addition to strong interaction between the surfacebound bithiophene and the TiO2. The nanohybrid film was applied to a sensitized-type photoelectrochemical solar cell, substantiating direct application of the nanohybrid film to electronic devices. The solar cell performance was closely associated with the interfacial structure in the nanohybrid film and the photopolymerization degree.