从概率密度角度看神经网络的可解释性

L. Lu, Tingting Pan, Junhong Zhao, Jie Yang
{"title":"从概率密度角度看神经网络的可解释性","authors":"L. Lu, Tingting Pan, Junhong Zhao, Jie Yang","doi":"10.1109/SSCI44817.2019.9002817","DOIUrl":null,"url":null,"abstract":"Currently, most of works about interpretation of neural networks are to visually explain the features learned by hidden layers. This paper explores the relationship between the input units and the output units of neural network from the perspective of probability density. For classification problems, it shows that the probability density function (PDF) of the output unit can be expressed as a mixture of three Gaussian density functions whose mean and variance are related to the information of the input units, under the assumption that the input units are independent of each other and obey a Gaussian distribution. The experimental results show that the theoretical distribution of the output unit is basically consistent with the actual distribution.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"282 3 1","pages":"1502-1507"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Interpretability for Neural Networks from the Perspective of Probability Density\",\"authors\":\"L. Lu, Tingting Pan, Junhong Zhao, Jie Yang\",\"doi\":\"10.1109/SSCI44817.2019.9002817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, most of works about interpretation of neural networks are to visually explain the features learned by hidden layers. This paper explores the relationship between the input units and the output units of neural network from the perspective of probability density. For classification problems, it shows that the probability density function (PDF) of the output unit can be expressed as a mixture of three Gaussian density functions whose mean and variance are related to the information of the input units, under the assumption that the input units are independent of each other and obey a Gaussian distribution. The experimental results show that the theoretical distribution of the output unit is basically consistent with the actual distribution.\",\"PeriodicalId\":6729,\"journal\":{\"name\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"282 3 1\",\"pages\":\"1502-1507\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI44817.2019.9002817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

目前,大多数关于神经网络解释的工作都是可视化地解释隐藏层学习到的特征。本文从概率密度的角度探讨了神经网络输入单元和输出单元之间的关系。对于分类问题,在假设输入单元相互独立且服从高斯分布的情况下,输出单元的概率密度函数(PDF)可以表示为均值和方差与输入单元信息相关的三个高斯密度函数的混合。实验结果表明,输出单元的理论分布与实际分布基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interpretability for Neural Networks from the Perspective of Probability Density
Currently, most of works about interpretation of neural networks are to visually explain the features learned by hidden layers. This paper explores the relationship between the input units and the output units of neural network from the perspective of probability density. For classification problems, it shows that the probability density function (PDF) of the output unit can be expressed as a mixture of three Gaussian density functions whose mean and variance are related to the information of the input units, under the assumption that the input units are independent of each other and obey a Gaussian distribution. The experimental results show that the theoretical distribution of the output unit is basically consistent with the actual distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1