全尺寸舱内人体运动动态气流的数值与实验研究

Zhuyang Han, W. Weng, Quanyi Huang
{"title":"全尺寸舱内人体运动动态气流的数值与实验研究","authors":"Zhuyang Han, W. Weng, Quanyi Huang","doi":"10.1080/10789669.2014.882677","DOIUrl":null,"url":null,"abstract":"This article investigates the aerodynamic effects of human movement by experiment and numerical simulations. In the experiment, a life-size thermal manikin, a double-track orbit, and a trolley were used to realize human movement, and the velocity distribution of the induced airflow was measured. In the numerical simulations, dynamic meshing was used to simulate the human movement. The aerodynamic effects and flow fields under moving speeds of 0.5, 0.75, 1.0, 1.25, and 1.5 m/s were studied. The same timing relationship and tendency of the instantaneous velocity can be found between the measured and computed results, although the computed peak values are smaller than the measured ones. Apparent recirculation zones and vortices can be seen in the wake behind the human body in numerical simulations. The streamwise velocity profile and the structure of the wake depend on the profile of the human body and the moving speed. At each location, the nondimensional relative velocities of different moving speeds are substantially the same. The aerodynamic effects of human movements depend on the moving speed, moving distance, and spatial location. These results can be a good help for the studies on pollutant dispersion, control of air quality, and infectious diseases in indoor environment.","PeriodicalId":13238,"journal":{"name":"HVAC&R Research","volume":"28 1","pages":"444 - 457"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Numerical and experimental investigation on the dynamic airflow of human movement in a full-scale cabin\",\"authors\":\"Zhuyang Han, W. Weng, Quanyi Huang\",\"doi\":\"10.1080/10789669.2014.882677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the aerodynamic effects of human movement by experiment and numerical simulations. In the experiment, a life-size thermal manikin, a double-track orbit, and a trolley were used to realize human movement, and the velocity distribution of the induced airflow was measured. In the numerical simulations, dynamic meshing was used to simulate the human movement. The aerodynamic effects and flow fields under moving speeds of 0.5, 0.75, 1.0, 1.25, and 1.5 m/s were studied. The same timing relationship and tendency of the instantaneous velocity can be found between the measured and computed results, although the computed peak values are smaller than the measured ones. Apparent recirculation zones and vortices can be seen in the wake behind the human body in numerical simulations. The streamwise velocity profile and the structure of the wake depend on the profile of the human body and the moving speed. At each location, the nondimensional relative velocities of different moving speeds are substantially the same. The aerodynamic effects of human movements depend on the moving speed, moving distance, and spatial location. These results can be a good help for the studies on pollutant dispersion, control of air quality, and infectious diseases in indoor environment.\",\"PeriodicalId\":13238,\"journal\":{\"name\":\"HVAC&R Research\",\"volume\":\"28 1\",\"pages\":\"444 - 457\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HVAC&R Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10789669.2014.882677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HVAC&R Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10789669.2014.882677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

本文通过实验和数值模拟研究了人体运动的气动效应。实验采用真人大小的热人体模型、双轨轨道和小车来实现人体运动,并测量了诱导气流的速度分布。在数值模拟中,采用动态网格法模拟人体运动。研究了0.5、0.75、1.0、1.25和1.5 m/s运动速度下的气动效应和流场。虽然计算的峰值小于实测值,但测量结果和计算结果之间存在相同的时间关系和瞬时速度的趋势。在数值模拟中,可以在人体后面的尾迹中看到明显的再循环区和漩涡。水流的速度分布和尾迹的结构取决于人体的形状和运动速度。在每个位置,不同运动速度的无因次相对速度基本相同。人体运动的空气动力学效应取决于运动速度、运动距离和空间位置。研究结果可为室内污染物扩散、空气质量控制和室内传染病的研究提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical and experimental investigation on the dynamic airflow of human movement in a full-scale cabin
This article investigates the aerodynamic effects of human movement by experiment and numerical simulations. In the experiment, a life-size thermal manikin, a double-track orbit, and a trolley were used to realize human movement, and the velocity distribution of the induced airflow was measured. In the numerical simulations, dynamic meshing was used to simulate the human movement. The aerodynamic effects and flow fields under moving speeds of 0.5, 0.75, 1.0, 1.25, and 1.5 m/s were studied. The same timing relationship and tendency of the instantaneous velocity can be found between the measured and computed results, although the computed peak values are smaller than the measured ones. Apparent recirculation zones and vortices can be seen in the wake behind the human body in numerical simulations. The streamwise velocity profile and the structure of the wake depend on the profile of the human body and the moving speed. At each location, the nondimensional relative velocities of different moving speeds are substantially the same. The aerodynamic effects of human movements depend on the moving speed, moving distance, and spatial location. These results can be a good help for the studies on pollutant dispersion, control of air quality, and infectious diseases in indoor environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
HVAC&R Research
HVAC&R Research 工程技术-工程:机械
自引率
0.00%
发文量
0
审稿时长
3 months
期刊最新文献
EOV Editorial Board The never-ending search Accelerating fast fluid dynamics with a coarse-grid projection scheme Numerical modeling of volatile organic compound emissions from ozone reactions with human-worn clothing in an aircraft cabin Dynamic simulation and analysis of ancillary service demand response strategies for variable air volume HVAC systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1