解纠缠特征学习的多任务对抗网络

Yang Liu, Zhaowen Wang, Hailin Jin, I. Wassell
{"title":"解纠缠特征学习的多任务对抗网络","authors":"Yang Liu, Zhaowen Wang, Hailin Jin, I. Wassell","doi":"10.1109/CVPR.2018.00394","DOIUrl":null,"url":null,"abstract":"We address the problem of image feature learning for the applications where multiple factors exist in the image generation process and only some factors are of our interest. We present a novel multi-task adversarial network based on an encoder-discriminator-generator architecture. The encoder extracts a disentangled feature representation for the factors of interest. The discriminators classify each of the factors as individual tasks. The encoder and the discriminators are trained cooperatively on factors of interest, but in an adversarial way on factors of distraction. The generator provides further regularization on the learned feature by reconstructing images with shared factors as the input image. We design a new optimization scheme to stabilize the adversarial optimization process when multiple distributions need to be aligned. The experiments on face recognition and font recognition tasks show that our method outperforms the state-of-the-art methods in terms of both recognizing the factors of interest and generalization to images with unseen variations.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"3743-3751"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"Multi-task Adversarial Network for Disentangled Feature Learning\",\"authors\":\"Yang Liu, Zhaowen Wang, Hailin Jin, I. Wassell\",\"doi\":\"10.1109/CVPR.2018.00394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of image feature learning for the applications where multiple factors exist in the image generation process and only some factors are of our interest. We present a novel multi-task adversarial network based on an encoder-discriminator-generator architecture. The encoder extracts a disentangled feature representation for the factors of interest. The discriminators classify each of the factors as individual tasks. The encoder and the discriminators are trained cooperatively on factors of interest, but in an adversarial way on factors of distraction. The generator provides further regularization on the learned feature by reconstructing images with shared factors as the input image. We design a new optimization scheme to stabilize the adversarial optimization process when multiple distributions need to be aligned. The experiments on face recognition and font recognition tasks show that our method outperforms the state-of-the-art methods in terms of both recognizing the factors of interest and generalization to images with unseen variations.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"3743-3751\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

我们针对图像生成过程中存在多个因素且只有一些因素是我们感兴趣的应用,解决了图像特征学习的问题。提出了一种基于编码器-鉴别器-生成器结构的多任务对抗网络。编码器为感兴趣的因素提取一个解纠缠的特征表示。鉴别器将每个因素分类为单独的任务。编码器和鉴别器在兴趣因素上进行合作训练,但在分心因素上进行对抗训练。生成器通过重建具有共享因子的图像作为输入图像,对学习到的特征进行进一步的正则化。我们设计了一种新的优化方案,以稳定多个分布需要对齐时的对抗优化过程。在人脸识别和字体识别任务上的实验表明,我们的方法在识别兴趣因素和对不可见变化的图像的泛化方面都优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-task Adversarial Network for Disentangled Feature Learning
We address the problem of image feature learning for the applications where multiple factors exist in the image generation process and only some factors are of our interest. We present a novel multi-task adversarial network based on an encoder-discriminator-generator architecture. The encoder extracts a disentangled feature representation for the factors of interest. The discriminators classify each of the factors as individual tasks. The encoder and the discriminators are trained cooperatively on factors of interest, but in an adversarial way on factors of distraction. The generator provides further regularization on the learned feature by reconstructing images with shared factors as the input image. We design a new optimization scheme to stabilize the adversarial optimization process when multiple distributions need to be aligned. The experiments on face recognition and font recognition tasks show that our method outperforms the state-of-the-art methods in terms of both recognizing the factors of interest and generalization to images with unseen variations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1