F. Silva, P. Bates, A. Esteban-Martín, M. Ebrahim-Zadeh, A. Grun, S. Cousin, J. Biegert
{"title":"可扩展共线BiB3O6 OPA,用于2.1µm的低周期CEP稳定脉冲","authors":"F. Silva, P. Bates, A. Esteban-Martín, M. Ebrahim-Zadeh, A. Grun, S. Cousin, J. Biegert","doi":"10.1109/CLEOE.2011.5943489","DOIUrl":null,"url":null,"abstract":"Few-cycle pulses centered at long wavelengths with stable carrier envelope phase are increasingly sought after for a range of strong-field physics and spectroscopic applications. The generation of such pulses at central wavelengths up to 1.8 µm is well-known [1], however at longer wavelengths non-collinear optical parametric amplifiers must be used to maintain bandwidth. Using the idler from such a non-collinear interaction always implies an angularly dispersed pulse, requiring complicated and lossy compensation strategies [2] which limit scalability to higher energies.","PeriodicalId":6331,"journal":{"name":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","volume":"29 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalable collinear BiB3O6 OPA for few-cycle CEP stable pulses at 2.1 µm\",\"authors\":\"F. Silva, P. Bates, A. Esteban-Martín, M. Ebrahim-Zadeh, A. Grun, S. Cousin, J. Biegert\",\"doi\":\"10.1109/CLEOE.2011.5943489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Few-cycle pulses centered at long wavelengths with stable carrier envelope phase are increasingly sought after for a range of strong-field physics and spectroscopic applications. The generation of such pulses at central wavelengths up to 1.8 µm is well-known [1], however at longer wavelengths non-collinear optical parametric amplifiers must be used to maintain bandwidth. Using the idler from such a non-collinear interaction always implies an angularly dispersed pulse, requiring complicated and lossy compensation strategies [2] which limit scalability to higher energies.\",\"PeriodicalId\":6331,\"journal\":{\"name\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"volume\":\"29 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE.2011.5943489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2011.5943489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Scalable collinear BiB3O6 OPA for few-cycle CEP stable pulses at 2.1 µm
Few-cycle pulses centered at long wavelengths with stable carrier envelope phase are increasingly sought after for a range of strong-field physics and spectroscopic applications. The generation of such pulses at central wavelengths up to 1.8 µm is well-known [1], however at longer wavelengths non-collinear optical parametric amplifiers must be used to maintain bandwidth. Using the idler from such a non-collinear interaction always implies an angularly dispersed pulse, requiring complicated and lossy compensation strategies [2] which limit scalability to higher energies.