水分子结构模型及液态水和固态水某些特征形成原因的研究

P. Pu, J. Pu, Zhengbin Zhu
{"title":"水分子结构模型及液态水和固态水某些特征形成原因的研究","authors":"P. Pu, J. Pu, Zhengbin Zhu","doi":"10.11648/j.ajmp.20200902.11","DOIUrl":null,"url":null,"abstract":"A model for water (H2O) molecule, the structure of ice, snow and liquid water were presented, and the reasons of formation of their specific characteristics were modeled in good coincidence with observed data. (1) A stable quasi rigid molecule structure may be constructed by dominant trajectories of electrons round and between the H-O-H nucleus according with the laws of Columb’s force and Kepler’s movement rule. The core of the water molecule is a isosceles triangle with ratio of distances between nucleus: (H-H)2/(H-O)2=2.5, which would be surrounded by moving electrons and form an equilateral triangular pyramid (ETP Model) with 2 pairs of “+/-” electricity endpoints and edge length of 0.48017nm. (2) The “+/-” endpoint of a water molecule may attract other “-/+” endpoint in distance of less than 0.27 nm. A molecule may joints other molecule to have all their 4 planes parallel each other and the 6 molecules may joint as a hexagon loop with a common plane and then these loops may similarly be formed for each plane of the pyramid and extend to whole space and form the water ice structure with Zigzag Hexagon Tunnel-Vacancy System (ZHTVS Model) with porosity of ≥2.28. (3) A “sheet model” of desublimation like the snowflake is more possible phenomenon below 0°C in air, possessing the self-similarity with the hexagon-sexangle-six needle forms. (4) The liquid water has the same structure of the solid ice, but because there is 1/11 possibility to have an appearance of double electrons at one endpoint of the pyramid with “-” charge, so when the temperature is above 0°C, a part of water molecules on the frame may possess the energy for separating from the frame, and will move into the tunnel/vacancy, being as a “free water molecule”. The total volume of the liquid water would decrease until to 4°C to the minimum. The ratio of density of solid water ice and liquid water is 11/12=0.916667. (5) The relationships of the specific characteristics of the water with its construction, such as density, expansibility, compressibility, specific heat capacity, electric and thermal conductivity, solubility for O2, H2S, NaCl, KCl, etc. were discussed and numerical modeled. The experiments of saturated solution of NaCl audio-visual indicated that there are tunnel/vacancy spaces for storing NaCl molecules/ions, and increasing the volume of 1/11 of water volume after freezing. (6) The surface structure of liquid water and the applications of research results are presented in other papers.","PeriodicalId":7717,"journal":{"name":"American Journal of Modern Physics","volume":"57 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study on the Structure Model of Water Molecule and the Reasons of Formation of Some Characteristics of Liquid & Solid Water\",\"authors\":\"P. Pu, J. Pu, Zhengbin Zhu\",\"doi\":\"10.11648/j.ajmp.20200902.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model for water (H2O) molecule, the structure of ice, snow and liquid water were presented, and the reasons of formation of their specific characteristics were modeled in good coincidence with observed data. (1) A stable quasi rigid molecule structure may be constructed by dominant trajectories of electrons round and between the H-O-H nucleus according with the laws of Columb’s force and Kepler’s movement rule. The core of the water molecule is a isosceles triangle with ratio of distances between nucleus: (H-H)2/(H-O)2=2.5, which would be surrounded by moving electrons and form an equilateral triangular pyramid (ETP Model) with 2 pairs of “+/-” electricity endpoints and edge length of 0.48017nm. (2) The “+/-” endpoint of a water molecule may attract other “-/+” endpoint in distance of less than 0.27 nm. A molecule may joints other molecule to have all their 4 planes parallel each other and the 6 molecules may joint as a hexagon loop with a common plane and then these loops may similarly be formed for each plane of the pyramid and extend to whole space and form the water ice structure with Zigzag Hexagon Tunnel-Vacancy System (ZHTVS Model) with porosity of ≥2.28. (3) A “sheet model” of desublimation like the snowflake is more possible phenomenon below 0°C in air, possessing the self-similarity with the hexagon-sexangle-six needle forms. (4) The liquid water has the same structure of the solid ice, but because there is 1/11 possibility to have an appearance of double electrons at one endpoint of the pyramid with “-” charge, so when the temperature is above 0°C, a part of water molecules on the frame may possess the energy for separating from the frame, and will move into the tunnel/vacancy, being as a “free water molecule”. The total volume of the liquid water would decrease until to 4°C to the minimum. The ratio of density of solid water ice and liquid water is 11/12=0.916667. (5) The relationships of the specific characteristics of the water with its construction, such as density, expansibility, compressibility, specific heat capacity, electric and thermal conductivity, solubility for O2, H2S, NaCl, KCl, etc. were discussed and numerical modeled. The experiments of saturated solution of NaCl audio-visual indicated that there are tunnel/vacancy spaces for storing NaCl molecules/ions, and increasing the volume of 1/11 of water volume after freezing. (6) The surface structure of liquid water and the applications of research results are presented in other papers.\",\"PeriodicalId\":7717,\"journal\":{\"name\":\"American Journal of Modern Physics\",\"volume\":\"57 1\",\"pages\":\"11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Modern Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.ajmp.20200902.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Modern Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajmp.20200902.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了水(H2O)分子、冰、雪和液态水的结构模型,并与观测数据很好地吻合了其特征形成的原因。(1)根据哥伦布力定律和开普勒运动规律,电子在H-O-H核周围和核间的主导运动轨迹可以构成稳定的准刚性分子结构。水分子的核心为等腰三角形,核距之比为(H-H)2/(H-O)2=2.5,其周围会被移动的电子包围,形成具有2对“+/-”电端点的等边三角形金字塔(ETP模型),边长为0.48017nm。(2)水分子的“+/-”端点可以在小于0.27 nm的距离内吸引其他“-/+”端点。一个分子可以连接其他分子,使它们的4个平面平行,6个分子可以连接成一个具有共同平面的六边形环,然后这些环可以在金字塔的每个平面上相似地形成并延伸到整个空间,形成具有孔隙率≥2.28的z形六边形隧道-空位体系(ZHTVS模型)的水冰结构。(3)在0℃以下的空气中更可能出现像雪花一样的“片状”升华现象,它与六边形-六棱形-六针形具有自相似性。(4)液态水具有与固体冰相同的结构,但由于有1/11的可能性在金字塔的一端出现带“-”电荷的双电子,所以当温度高于0℃时,框架上的一部分水分子可能具有脱离框架的能量,并进入隧道/空位,成为“自由水分子”。液态水的总体积会减小,直到4°C达到最小。固体水冰与液态水的密度之比为11/12=0.916667。(5)讨论了水的密度、膨胀性、压缩性、比热容、电导率和导热系数、对O2、H2S、NaCl、KCl等溶解度与水的结构之间的关系,并进行了数值模拟。NaCl饱和溶液的视听实验表明,NaCl分子/离子在饱和溶液中存在通道/空位,冻结后的体积增加了水体积的1/11。(6)其他论文介绍了液态水的表面结构和研究成果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on the Structure Model of Water Molecule and the Reasons of Formation of Some Characteristics of Liquid & Solid Water
A model for water (H2O) molecule, the structure of ice, snow and liquid water were presented, and the reasons of formation of their specific characteristics were modeled in good coincidence with observed data. (1) A stable quasi rigid molecule structure may be constructed by dominant trajectories of electrons round and between the H-O-H nucleus according with the laws of Columb’s force and Kepler’s movement rule. The core of the water molecule is a isosceles triangle with ratio of distances between nucleus: (H-H)2/(H-O)2=2.5, which would be surrounded by moving electrons and form an equilateral triangular pyramid (ETP Model) with 2 pairs of “+/-” electricity endpoints and edge length of 0.48017nm. (2) The “+/-” endpoint of a water molecule may attract other “-/+” endpoint in distance of less than 0.27 nm. A molecule may joints other molecule to have all their 4 planes parallel each other and the 6 molecules may joint as a hexagon loop with a common plane and then these loops may similarly be formed for each plane of the pyramid and extend to whole space and form the water ice structure with Zigzag Hexagon Tunnel-Vacancy System (ZHTVS Model) with porosity of ≥2.28. (3) A “sheet model” of desublimation like the snowflake is more possible phenomenon below 0°C in air, possessing the self-similarity with the hexagon-sexangle-six needle forms. (4) The liquid water has the same structure of the solid ice, but because there is 1/11 possibility to have an appearance of double electrons at one endpoint of the pyramid with “-” charge, so when the temperature is above 0°C, a part of water molecules on the frame may possess the energy for separating from the frame, and will move into the tunnel/vacancy, being as a “free water molecule”. The total volume of the liquid water would decrease until to 4°C to the minimum. The ratio of density of solid water ice and liquid water is 11/12=0.916667. (5) The relationships of the specific characteristics of the water with its construction, such as density, expansibility, compressibility, specific heat capacity, electric and thermal conductivity, solubility for O2, H2S, NaCl, KCl, etc. were discussed and numerical modeled. The experiments of saturated solution of NaCl audio-visual indicated that there are tunnel/vacancy spaces for storing NaCl molecules/ions, and increasing the volume of 1/11 of water volume after freezing. (6) The surface structure of liquid water and the applications of research results are presented in other papers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cutting–Edge Physics Driven Advancements in Medical Industry Characteristics of Two-Electron Atoms Examined Using the Hartree-Fock Approximation Difficulties Analytical Study of the Behavioral Trend of Klein-Gordon Equation in Different Potentials Strongly Coupled Fermions in Odd Dimensions and the Running Cut-off Λd Annular Axisymmetric Stagnation Flow of a Casson Fluid Through Porous Media in a Moving Cylinder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1