石膏和覆盖作物对大豆种植系统温室气体排放的影响

IF 2.2 4区 农林科学 Q2 ECOLOGY Journal of Soil and Water Conservation Pub Date : 2023-02-06 DOI:10.2489/jswc.2023.00042
D. Watts, G. Runion, W. Dick, J.M. Gonzalez, K. Islam, D. Flanagan, N. Fausey, T. Vantoai, M. Batte, R. Reeder, D. Kost, L. Chen, P. Jacinthe
{"title":"石膏和覆盖作物对大豆种植系统温室气体排放的影响","authors":"D. Watts, G. Runion, W. Dick, J.M. Gonzalez, K. Islam, D. Flanagan, N. Fausey, T. Vantoai, M. Batte, R. Reeder, D. Kost, L. Chen, P. Jacinthe","doi":"10.2489/jswc.2023.00042","DOIUrl":null,"url":null,"abstract":"Agriculture has the opportunity to mitigate anthropogenic contributions to global change by increasing soil sequestration of greenhouse gases (GHG) and by reducing efflux through management. Common agricultural management practices include crop rotation and use of cover crops. Interest in the use of gypsum in agricultural systems has also increased in recent years. However, little is known regarding how combining gypsum with other management practices impact GHG emissions in soybean (Glycine max [L.] Merr.)-based cropping systems. A study was implemented at three locations (i.e., east-central Indiana, northwest Ohio, and east-central Alabama) to evaluate the influence of gypsum and cover cropping within a continuous soybean and a corn (Zea mays L.)–soybean rotation on crop yield and soil properties. Within this study, carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) were also monitored periodically following soybean seeding through harvest from 2012 to 2016. The combined gas data were then used to calculate a global warming potential (GWP). Overall, few differences in GHG emissions were observed across sites and years, and no consistent patterns were noted, likely due to large variabilities in gas efflux measurements and limited influence of treatments on trace gases. However, treatment differences were observed for one or more GHG within specific years and at specific sites. Comparison across sites revealed the warmer/wetter climate in Alabama resulted in greater CO2 efflux, while climate and soil factors at the northern sites led to greater N2O efflux. At all locations, CH4 emissions were generally low and sites tended to be small net sinks. Given that GHG emissions drive GWP, it also showed few treatment responses and no consistent patterns. It can be concluded from this study that contributions of gypsum and cover crop to GHG emissions from soil in soybean cropping systems will likely have little influence on contributions to global climate change.","PeriodicalId":50049,"journal":{"name":"Journal of Soil and Water Conservation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Influence of gypsum and cover crop on greenhouse gas emissions in soybean cropping systems\",\"authors\":\"D. Watts, G. Runion, W. Dick, J.M. Gonzalez, K. Islam, D. Flanagan, N. Fausey, T. Vantoai, M. Batte, R. Reeder, D. Kost, L. Chen, P. Jacinthe\",\"doi\":\"10.2489/jswc.2023.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agriculture has the opportunity to mitigate anthropogenic contributions to global change by increasing soil sequestration of greenhouse gases (GHG) and by reducing efflux through management. Common agricultural management practices include crop rotation and use of cover crops. Interest in the use of gypsum in agricultural systems has also increased in recent years. However, little is known regarding how combining gypsum with other management practices impact GHG emissions in soybean (Glycine max [L.] Merr.)-based cropping systems. A study was implemented at three locations (i.e., east-central Indiana, northwest Ohio, and east-central Alabama) to evaluate the influence of gypsum and cover cropping within a continuous soybean and a corn (Zea mays L.)–soybean rotation on crop yield and soil properties. Within this study, carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) were also monitored periodically following soybean seeding through harvest from 2012 to 2016. The combined gas data were then used to calculate a global warming potential (GWP). Overall, few differences in GHG emissions were observed across sites and years, and no consistent patterns were noted, likely due to large variabilities in gas efflux measurements and limited influence of treatments on trace gases. However, treatment differences were observed for one or more GHG within specific years and at specific sites. Comparison across sites revealed the warmer/wetter climate in Alabama resulted in greater CO2 efflux, while climate and soil factors at the northern sites led to greater N2O efflux. At all locations, CH4 emissions were generally low and sites tended to be small net sinks. Given that GHG emissions drive GWP, it also showed few treatment responses and no consistent patterns. It can be concluded from this study that contributions of gypsum and cover crop to GHG emissions from soil in soybean cropping systems will likely have little influence on contributions to global climate change.\",\"PeriodicalId\":50049,\"journal\":{\"name\":\"Journal of Soil and Water Conservation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Soil and Water Conservation\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.2489/jswc.2023.00042\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil and Water Conservation","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.2489/jswc.2023.00042","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 3

摘要

农业有机会通过增加土壤对温室气体的固存和通过管理减少温室气体外流来减轻人为因素对全球变化的影响。常见的农业管理做法包括轮作和使用覆盖作物。近年来,人们对在农业系统中使用石膏的兴趣也有所增加。然而,关于将石膏与其他管理措施相结合如何影响大豆的温室气体排放,人们知之甚少。基于Merr.)的种植系统。在三个地点(即印第安纳州中东部、俄亥俄州西北部和阿拉巴马州中东部)实施了一项研究,以评估大豆和玉米(Zea mays L.) -大豆轮作中石膏和覆盖种植对作物产量和土壤性质的影响。在这项研究中,二氧化碳(CO2)、氧化亚氮(N2O)和甲烷(CH4)也被定期监测,从2012年到2016年大豆播种到收获。然后用综合的气体数据来计算全球变暖潜势(GWP)。总体而言,在不同地点和年份观察到的温室气体排放差异不大,也没有注意到一致的模式,这可能是由于气体流出测量的差异很大,以及处理对微量气体的影响有限。然而,在特定年份和特定地点,对一种或多种温室气体的处理存在差异。不同站点间比较发现,气候偏暖/湿润导致阿拉巴马州的CO2外排较大,而北部站点的气候和土壤因素导致N2O外排较大。在所有地点,CH4排放量普遍较低,而且地点往往是小的净汇。考虑到温室气体排放驱动全球升温潜能值,它也显示出很少的处理响应和没有一致的模式。研究结果表明,大豆种植系统中石膏和覆盖作物对土壤温室气体排放的贡献可能对全球气候变化的贡献影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of gypsum and cover crop on greenhouse gas emissions in soybean cropping systems
Agriculture has the opportunity to mitigate anthropogenic contributions to global change by increasing soil sequestration of greenhouse gases (GHG) and by reducing efflux through management. Common agricultural management practices include crop rotation and use of cover crops. Interest in the use of gypsum in agricultural systems has also increased in recent years. However, little is known regarding how combining gypsum with other management practices impact GHG emissions in soybean (Glycine max [L.] Merr.)-based cropping systems. A study was implemented at three locations (i.e., east-central Indiana, northwest Ohio, and east-central Alabama) to evaluate the influence of gypsum and cover cropping within a continuous soybean and a corn (Zea mays L.)–soybean rotation on crop yield and soil properties. Within this study, carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) were also monitored periodically following soybean seeding through harvest from 2012 to 2016. The combined gas data were then used to calculate a global warming potential (GWP). Overall, few differences in GHG emissions were observed across sites and years, and no consistent patterns were noted, likely due to large variabilities in gas efflux measurements and limited influence of treatments on trace gases. However, treatment differences were observed for one or more GHG within specific years and at specific sites. Comparison across sites revealed the warmer/wetter climate in Alabama resulted in greater CO2 efflux, while climate and soil factors at the northern sites led to greater N2O efflux. At all locations, CH4 emissions were generally low and sites tended to be small net sinks. Given that GHG emissions drive GWP, it also showed few treatment responses and no consistent patterns. It can be concluded from this study that contributions of gypsum and cover crop to GHG emissions from soil in soybean cropping systems will likely have little influence on contributions to global climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
2.60%
发文量
0
审稿时长
3.3 months
期刊介绍: The Journal of Soil and Water Conservation (JSWC) is a multidisciplinary journal of natural resource conservation research, practice, policy, and perspectives. The journal has two sections: the A Section containing various departments and features, and the Research Section containing peer-reviewed research papers.
期刊最新文献
Defining boundaries and conceptual frameworks for ecologically focused agricultural systems Artificial intelligence for assessing organic matter content and related soil properties Decompaction and organic amendments provide short-term improvements in soil health during urban, residential development Effect of biochar treatment on soil pH and cucumber fruit: A demonstration of the importance of biochar amendment on the tropical soils of Nigeria Erratum for Martinez et al., Leveraging ecological monitoring programs to collect soil and geomorphology data across the western United States
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1