M. Dieckmann, M. Falk, D. Folini, R. Walder, P. Steneteg, I. Hotz, A. Ynnerman
{"title":"热对等离子体和电子-质子等离子体边界的无碰撞瑞利-泰勒样不稳定性:波状模式","authors":"M. Dieckmann, M. Falk, D. Folini, R. Walder, P. Steneteg, I. Hotz, A. Ynnerman","doi":"10.1063/5.0018321","DOIUrl":null,"url":null,"abstract":"We study with a two-dimensional particle-in-cell simulation the stability of a discontinuity or piston, which separates an electron-positron cloud from a cooler electron-proton plasma. Such a piston might be present in the relativistic jets of accreting black holes separating the jet material from the surrounding ambient plasma and when pair clouds form during an X-ray flare and expand into the plasma of the accretion disk corona. We inject a pair plasma at a simulation boundary with a mildly relativistic temperature and mean speed. It flows across a spatially uniform electron-proton plasma, which is permeated by a background magnetic field. The magnetic field is aligned with one simulation direction and oriented orthogonally to the mean velocity vector of the pair cloud. The expanding pair cloud expels the magnetic field and piles it up at its front. It is amplified to a value large enough to trap ambient electrons. The current of the trapped electrons, which are carried with the expanding cloud front, drives an electric field that accelerates protons. A solitary wave grows and changes into a piston after it saturated. Our simulations show that this piston undergoes a collision-less instability similar to a Rayleigh-Taylor instability. The undular mode grows and we observe fingers in the proton density distribution. The effect of the instability is to deform the piston but it cannot destroy it.","PeriodicalId":8437,"journal":{"name":"arXiv: High Energy Astrophysical Phenomena","volume":"19 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Collisionless Rayleigh–Taylor-like instability of the boundary between a hot pair plasma and an electron–proton plasma: The undular mode\",\"authors\":\"M. Dieckmann, M. Falk, D. Folini, R. Walder, P. Steneteg, I. Hotz, A. Ynnerman\",\"doi\":\"10.1063/5.0018321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study with a two-dimensional particle-in-cell simulation the stability of a discontinuity or piston, which separates an electron-positron cloud from a cooler electron-proton plasma. Such a piston might be present in the relativistic jets of accreting black holes separating the jet material from the surrounding ambient plasma and when pair clouds form during an X-ray flare and expand into the plasma of the accretion disk corona. We inject a pair plasma at a simulation boundary with a mildly relativistic temperature and mean speed. It flows across a spatially uniform electron-proton plasma, which is permeated by a background magnetic field. The magnetic field is aligned with one simulation direction and oriented orthogonally to the mean velocity vector of the pair cloud. The expanding pair cloud expels the magnetic field and piles it up at its front. It is amplified to a value large enough to trap ambient electrons. The current of the trapped electrons, which are carried with the expanding cloud front, drives an electric field that accelerates protons. A solitary wave grows and changes into a piston after it saturated. Our simulations show that this piston undergoes a collision-less instability similar to a Rayleigh-Taylor instability. The undular mode grows and we observe fingers in the proton density distribution. The effect of the instability is to deform the piston but it cannot destroy it.\",\"PeriodicalId\":8437,\"journal\":{\"name\":\"arXiv: High Energy Astrophysical Phenomena\",\"volume\":\"19 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0018321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0018321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collisionless Rayleigh–Taylor-like instability of the boundary between a hot pair plasma and an electron–proton plasma: The undular mode
We study with a two-dimensional particle-in-cell simulation the stability of a discontinuity or piston, which separates an electron-positron cloud from a cooler electron-proton plasma. Such a piston might be present in the relativistic jets of accreting black holes separating the jet material from the surrounding ambient plasma and when pair clouds form during an X-ray flare and expand into the plasma of the accretion disk corona. We inject a pair plasma at a simulation boundary with a mildly relativistic temperature and mean speed. It flows across a spatially uniform electron-proton plasma, which is permeated by a background magnetic field. The magnetic field is aligned with one simulation direction and oriented orthogonally to the mean velocity vector of the pair cloud. The expanding pair cloud expels the magnetic field and piles it up at its front. It is amplified to a value large enough to trap ambient electrons. The current of the trapped electrons, which are carried with the expanding cloud front, drives an electric field that accelerates protons. A solitary wave grows and changes into a piston after it saturated. Our simulations show that this piston undergoes a collision-less instability similar to a Rayleigh-Taylor instability. The undular mode grows and we observe fingers in the proton density distribution. The effect of the instability is to deform the piston but it cannot destroy it.