{"title":"HOT HgCdTe光电二极管与二维材料红外探测器性能极限的比较","authors":"A. Rogalski, M. Kopytko, P. Martyniuk, Weida Hu","doi":"10.24425/OPELRE.2020.132504","DOIUrl":null,"url":null,"abstract":"Article history: Received 24 Mar. 2020 Received in revised form 08 Apr. 2020 Accepted 08 Apr. 2020 The semiempirical rule, “Rule 07” specified in 2007 for P-on-n HgCdTe photodiodes has become widely popular within infrared community as a reference for other technologies, notably for III-V barrier photodetectors and type-II superlattice photodiodes. However, in the last decade in several papers it has been shown that the measured dark current density of HgCdTe photodiodes is considerably lower than predicted by benchmark Rule 07. Our theoretical estimates carried out in this paper support experimental data.","PeriodicalId":54670,"journal":{"name":"Opto-Electronics Review","volume":"113 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors\",\"authors\":\"A. Rogalski, M. Kopytko, P. Martyniuk, Weida Hu\",\"doi\":\"10.24425/OPELRE.2020.132504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Article history: Received 24 Mar. 2020 Received in revised form 08 Apr. 2020 Accepted 08 Apr. 2020 The semiempirical rule, “Rule 07” specified in 2007 for P-on-n HgCdTe photodiodes has become widely popular within infrared community as a reference for other technologies, notably for III-V barrier photodetectors and type-II superlattice photodiodes. However, in the last decade in several papers it has been shown that the measured dark current density of HgCdTe photodiodes is considerably lower than predicted by benchmark Rule 07. Our theoretical estimates carried out in this paper support experimental data.\",\"PeriodicalId\":54670,\"journal\":{\"name\":\"Opto-Electronics Review\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opto-Electronics Review\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.24425/OPELRE.2020.132504\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronics Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/OPELRE.2020.132504","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors
Article history: Received 24 Mar. 2020 Received in revised form 08 Apr. 2020 Accepted 08 Apr. 2020 The semiempirical rule, “Rule 07” specified in 2007 for P-on-n HgCdTe photodiodes has become widely popular within infrared community as a reference for other technologies, notably for III-V barrier photodetectors and type-II superlattice photodiodes. However, in the last decade in several papers it has been shown that the measured dark current density of HgCdTe photodiodes is considerably lower than predicted by benchmark Rule 07. Our theoretical estimates carried out in this paper support experimental data.
期刊介绍:
Opto-Electronics Review is peer-reviewed and quarterly published by the Polish Academy of Sciences (PAN) and the Association of Polish Electrical Engineers (SEP) in electronic version. It covers the whole field of theory, experimental techniques, and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. The scope of the published papers includes any aspect of scientific, technological, technical and industrial works concerning generation, transmission, transformation, detection and application of light and other forms of radiative energy whose quantum unit is photon. Papers covering novel topics extending the frontiers in optoelectronics or photonics are very encouraged.
It has been established for the publication of high quality original papers from the following fields:
Optical Design and Applications,
Image Processing
Metamaterials,
Optoelectronic Materials,
Micro-Opto-Electro-Mechanical Systems,
Infrared Physics and Technology,
Modelling of Optoelectronic Devices, Semiconductor Lasers
Technology and Fabrication of Optoelectronic Devices,
Photonic Crystals,
Laser Physics, Technology and Applications,
Optical Sensors and Applications,
Photovoltaics,
Biomedical Optics and Photonics