K. Hanssen, J. Asplund, N. Clarke, Ruben Selmer, L. Nybakken
{"title":"挪威云杉林施木灰和氮肥对树木生长和化学防御成分均有影响","authors":"K. Hanssen, J. Asplund, N. Clarke, Ruben Selmer, L. Nybakken","doi":"10.1093/forestry/cpz078","DOIUrl":null,"url":null,"abstract":"\n We fertilized a Norway spruce (Picea abies (L.) Karst.) stand on rich mineral soil with 3 t ha−1 of wood ash (ASH), 150 kg ha−1 of nitrogen (N) or a combination of wood ash and nitrogen (ASH + N), in addition to unfertilized control plots. After five growing seasons, we remeasured the trees and took core samples. Current- and previous-year needles were sampled and analyzed for total nitrogen and carbon, low-molecular weight phenolics and condensed tannins. Annual volume increment and standing volume were significantly higher in the ASH + N treatment than in control plots after 5 years. N gave a significant positive effect on basal area growth in the third year, after which the effect diminished. The ASH + N treated trees, on the other hand, showed an increasing basal area growth trend throughout the period. ASH reduced the total concentration of low-molecular weight phenolic compounds significantly in current-year needles. Phenolic acids increased under both ASH and ASH + N, while flavonoids decreased significantly under the same treatments compared to N. By including annual growth rate before fertilization in the analyses, the effect of N-treatment on flavonoids was positive only in trees with higher growth rates, and in those trees the concentration was higher than in both ASH-treated plots and controls. An acetophenone, constituting more than half of the total low-molecular weight phenolics concentration, was strongly reduced under all fertilization treatments. These results demonstrate that in addition to effects on tree growth, fertilization of the forest floor also has a strong influence on other metabolic processes of trees, with potential implications for ecosystem functioning.","PeriodicalId":12342,"journal":{"name":"Forestry","volume":"57 1","pages":"589-600"},"PeriodicalIF":3.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fertilization of Norway spruce forest with wood ash and nitrogen affected both tree growth and composition of chemical defence\",\"authors\":\"K. Hanssen, J. Asplund, N. Clarke, Ruben Selmer, L. Nybakken\",\"doi\":\"10.1093/forestry/cpz078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We fertilized a Norway spruce (Picea abies (L.) Karst.) stand on rich mineral soil with 3 t ha−1 of wood ash (ASH), 150 kg ha−1 of nitrogen (N) or a combination of wood ash and nitrogen (ASH + N), in addition to unfertilized control plots. After five growing seasons, we remeasured the trees and took core samples. Current- and previous-year needles were sampled and analyzed for total nitrogen and carbon, low-molecular weight phenolics and condensed tannins. Annual volume increment and standing volume were significantly higher in the ASH + N treatment than in control plots after 5 years. N gave a significant positive effect on basal area growth in the third year, after which the effect diminished. The ASH + N treated trees, on the other hand, showed an increasing basal area growth trend throughout the period. ASH reduced the total concentration of low-molecular weight phenolic compounds significantly in current-year needles. Phenolic acids increased under both ASH and ASH + N, while flavonoids decreased significantly under the same treatments compared to N. By including annual growth rate before fertilization in the analyses, the effect of N-treatment on flavonoids was positive only in trees with higher growth rates, and in those trees the concentration was higher than in both ASH-treated plots and controls. An acetophenone, constituting more than half of the total low-molecular weight phenolics concentration, was strongly reduced under all fertilization treatments. These results demonstrate that in addition to effects on tree growth, fertilization of the forest floor also has a strong influence on other metabolic processes of trees, with potential implications for ecosystem functioning.\",\"PeriodicalId\":12342,\"journal\":{\"name\":\"Forestry\",\"volume\":\"57 1\",\"pages\":\"589-600\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forestry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/forestry/cpz078\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/forestry/cpz078","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
Fertilization of Norway spruce forest with wood ash and nitrogen affected both tree growth and composition of chemical defence
We fertilized a Norway spruce (Picea abies (L.) Karst.) stand on rich mineral soil with 3 t ha−1 of wood ash (ASH), 150 kg ha−1 of nitrogen (N) or a combination of wood ash and nitrogen (ASH + N), in addition to unfertilized control plots. After five growing seasons, we remeasured the trees and took core samples. Current- and previous-year needles were sampled and analyzed for total nitrogen and carbon, low-molecular weight phenolics and condensed tannins. Annual volume increment and standing volume were significantly higher in the ASH + N treatment than in control plots after 5 years. N gave a significant positive effect on basal area growth in the third year, after which the effect diminished. The ASH + N treated trees, on the other hand, showed an increasing basal area growth trend throughout the period. ASH reduced the total concentration of low-molecular weight phenolic compounds significantly in current-year needles. Phenolic acids increased under both ASH and ASH + N, while flavonoids decreased significantly under the same treatments compared to N. By including annual growth rate before fertilization in the analyses, the effect of N-treatment on flavonoids was positive only in trees with higher growth rates, and in those trees the concentration was higher than in both ASH-treated plots and controls. An acetophenone, constituting more than half of the total low-molecular weight phenolics concentration, was strongly reduced under all fertilization treatments. These results demonstrate that in addition to effects on tree growth, fertilization of the forest floor also has a strong influence on other metabolic processes of trees, with potential implications for ecosystem functioning.
期刊介绍:
The journal is inclusive of all subjects, geographical zones and study locations, including trees in urban environments, plantations and natural forests. We welcome papers that consider economic, environmental and social factors and, in particular, studies that take an integrated approach to sustainable management. In considering suitability for publication, attention is given to the originality of contributions and their likely impact on policy and practice, as well as their contribution to the development of knowledge.
Special Issues - each year one edition of Forestry will be a Special Issue and will focus on one subject in detail; this will usually be by publication of the proceedings of an international meeting.