{"title":"PowerHC:用于高级最近邻分类的距离非线性归一化","authors":"M. Bicego, M. Orozco-Alzate","doi":"10.1109/ICPR48806.2021.9413210","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the exploitation of non linear scaling of distances for advanced nearest neighbor classification. Starting from the recently found relation between the Hypersphere Classifier (HC) [1] and the Adaptive Nearest Neighbor rule (ANN) [2], here we propose PowerHC, an improved version of HC in which distances are normalized using a non linear mapping; non linear scaling of data, whose usefulness for feature spaces has been already assessed, has been hardly investigated for distances. A thorough experimental evaluation, involving 24 datasets and a challenging real world scenario of seismic signal classification, confirms the suitability of the proposed approach.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"12 1","pages":"1205-1211"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"PowerHC: non linear normalization of distances for advanced nearest neighbor classification\",\"authors\":\"M. Bicego, M. Orozco-Alzate\",\"doi\":\"10.1109/ICPR48806.2021.9413210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate the exploitation of non linear scaling of distances for advanced nearest neighbor classification. Starting from the recently found relation between the Hypersphere Classifier (HC) [1] and the Adaptive Nearest Neighbor rule (ANN) [2], here we propose PowerHC, an improved version of HC in which distances are normalized using a non linear mapping; non linear scaling of data, whose usefulness for feature spaces has been already assessed, has been hardly investigated for distances. A thorough experimental evaluation, involving 24 datasets and a challenging real world scenario of seismic signal classification, confirms the suitability of the proposed approach.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"12 1\",\"pages\":\"1205-1211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9413210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9413210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PowerHC: non linear normalization of distances for advanced nearest neighbor classification
In this paper we investigate the exploitation of non linear scaling of distances for advanced nearest neighbor classification. Starting from the recently found relation between the Hypersphere Classifier (HC) [1] and the Adaptive Nearest Neighbor rule (ANN) [2], here we propose PowerHC, an improved version of HC in which distances are normalized using a non linear mapping; non linear scaling of data, whose usefulness for feature spaces has been already assessed, has been hardly investigated for distances. A thorough experimental evaluation, involving 24 datasets and a challenging real world scenario of seismic signal classification, confirms the suitability of the proposed approach.