平面上运动的涡旋三极子速度场中被动粒子的传递

V. Govorukhin
{"title":"平面上运动的涡旋三极子速度场中被动粒子的传递","authors":"V. Govorukhin","doi":"10.18500/0869-6632-003039","DOIUrl":null,"url":null,"abstract":"Purpose of this article is to study the transport of passive particles in the velocity field of a vortex tripole with a change in the parameter that determines the speed of the configuration movement. A structure consisting of a central vortex and satellite vortices rotating around it with the opposite vorticity is understood as a tripole. We employ a system of three point vortices, the most simple mathematical representation of a vortex tripole, which may be expressed as a system of nonlinear ordinary differential equations with a parameter. Consideration is limited to a particular case of a tripole with zero total vorticity. The influence of the speed values of vortex configuration movement on the processes of passive particle transport has been studied. Methods. The study was carried out numerically using algorithms based on the dynamical systems approaches including the construction of the Poincare map and the analysis of the dynamics of marker particles. Were carried out long ´ times calculations, corresponding to hundreds and thousands of turns around the tripole center. Integrators of high orders of accuracy were used to solve the Cauchy problems, which made it possible to adequacy of the calculation result control. Results. We found that transferring passive particles is fundamentally different depending on the speed of the tripole. A vast zone of chaotic dynamics forms in the neighborhood of the vortices when the velocity is low. This zone slowly shifts along with the tripole. There are subregions of active and slow mixing inside the chaos region. The possible stages of particle dynamics are: transfer from the region to the right of the tripole to the area to the left, vigorous mixing near the vortices, and slowly drifting to the region to the left of the tripole. At a high speed of vortex configuration in the entire chaotic region, the particles are strongly mixed. The vortex tripole removes particles from the vicinity of its initial position over long distances and practically does not capture new particles along its path. In intermediate situations, both processes can be realized at varying degrees. Conclusion. Non-trivial scenarios for the transport of passive particles by a vortex tripole, which can also occur in real vortex configurations of fluids, have been discovered and described.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transfer of passive particles in the velocity field of vortex tripole moving on a plane\",\"authors\":\"V. Govorukhin\",\"doi\":\"10.18500/0869-6632-003039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purpose of this article is to study the transport of passive particles in the velocity field of a vortex tripole with a change in the parameter that determines the speed of the configuration movement. A structure consisting of a central vortex and satellite vortices rotating around it with the opposite vorticity is understood as a tripole. We employ a system of three point vortices, the most simple mathematical representation of a vortex tripole, which may be expressed as a system of nonlinear ordinary differential equations with a parameter. Consideration is limited to a particular case of a tripole with zero total vorticity. The influence of the speed values of vortex configuration movement on the processes of passive particle transport has been studied. Methods. The study was carried out numerically using algorithms based on the dynamical systems approaches including the construction of the Poincare map and the analysis of the dynamics of marker particles. Were carried out long ´ times calculations, corresponding to hundreds and thousands of turns around the tripole center. Integrators of high orders of accuracy were used to solve the Cauchy problems, which made it possible to adequacy of the calculation result control. Results. We found that transferring passive particles is fundamentally different depending on the speed of the tripole. A vast zone of chaotic dynamics forms in the neighborhood of the vortices when the velocity is low. This zone slowly shifts along with the tripole. There are subregions of active and slow mixing inside the chaos region. The possible stages of particle dynamics are: transfer from the region to the right of the tripole to the area to the left, vigorous mixing near the vortices, and slowly drifting to the region to the left of the tripole. At a high speed of vortex configuration in the entire chaotic region, the particles are strongly mixed. The vortex tripole removes particles from the vicinity of its initial position over long distances and practically does not capture new particles along its path. In intermediate situations, both processes can be realized at varying degrees. Conclusion. Non-trivial scenarios for the transport of passive particles by a vortex tripole, which can also occur in real vortex configurations of fluids, have been discovered and described.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003039\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

本文的目的是研究被动粒子在旋涡三极子速度场中决定构型运动速度的参数改变时的输运。由中心涡旋和以相反涡度围绕其旋转的卫星涡旋组成的结构被理解为三极体。我们采用一个由三点涡组成的系统,这是涡三极的最简单的数学表示,它可以表示为一个带参数的非线性常微分方程系统。我们只考虑总涡量为零的三极子的特殊情况。研究了涡旋组态运动速度值对粒子被动输运过程的影响。方法。该研究采用基于动力系统方法的数值算法进行,包括庞加莱图的构建和标记粒子的动力学分析。分别进行了长时间的计算,对应于绕三极中心转动数百和数千圈。采用高阶精度积分器求解柯西问题,使计算结果的充分性控制成为可能。结果。我们发现,由于三极子的速度不同,传递被动粒子的过程是完全不同的。当速度较低时,在旋涡附近会形成一个巨大的混沌动力学区域。这个区域随着三极子缓慢移动。混沌区内有活跃混合和缓慢混合的子区域。粒子动力学的可能阶段是:从三极子的右侧区域转移到左侧区域,在涡旋附近剧烈混合,缓慢漂移到三极子的左侧区域。在整个混沌区域的高速涡旋配置下,粒子强烈混合。涡旋三极子在很长一段距离内将粒子从其初始位置附近移走,实际上不会沿着其路径捕获新粒子。在中间情况下,这两个过程可以在不同程度上实现。结论。已经发现并描述了被动粒子通过涡旋三极子输运的非平凡情形,这种情形也可以发生在流体的真实涡旋构型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer of passive particles in the velocity field of vortex tripole moving on a plane
Purpose of this article is to study the transport of passive particles in the velocity field of a vortex tripole with a change in the parameter that determines the speed of the configuration movement. A structure consisting of a central vortex and satellite vortices rotating around it with the opposite vorticity is understood as a tripole. We employ a system of three point vortices, the most simple mathematical representation of a vortex tripole, which may be expressed as a system of nonlinear ordinary differential equations with a parameter. Consideration is limited to a particular case of a tripole with zero total vorticity. The influence of the speed values of vortex configuration movement on the processes of passive particle transport has been studied. Methods. The study was carried out numerically using algorithms based on the dynamical systems approaches including the construction of the Poincare map and the analysis of the dynamics of marker particles. Were carried out long ´ times calculations, corresponding to hundreds and thousands of turns around the tripole center. Integrators of high orders of accuracy were used to solve the Cauchy problems, which made it possible to adequacy of the calculation result control. Results. We found that transferring passive particles is fundamentally different depending on the speed of the tripole. A vast zone of chaotic dynamics forms in the neighborhood of the vortices when the velocity is low. This zone slowly shifts along with the tripole. There are subregions of active and slow mixing inside the chaos region. The possible stages of particle dynamics are: transfer from the region to the right of the tripole to the area to the left, vigorous mixing near the vortices, and slowly drifting to the region to the left of the tripole. At a high speed of vortex configuration in the entire chaotic region, the particles are strongly mixed. The vortex tripole removes particles from the vicinity of its initial position over long distances and practically does not capture new particles along its path. In intermediate situations, both processes can be realized at varying degrees. Conclusion. Non-trivial scenarios for the transport of passive particles by a vortex tripole, which can also occur in real vortex configurations of fluids, have been discovered and described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
25.00%
发文量
47
期刊介绍: Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.
期刊最新文献
80 years of Vladislav A. Tsarev 70 years of Sergey V. Gonchenko 40 years of Ilya V. Sysoev To the 85th anniversary of Dmitry Ivanovich Trubetskov On the anniversary of Sergei A. Kashchenko
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1