H.M. Fagerholm , C. Lindsjö , J.B. Rosenholm , K. Rökman
{"title":"烷基苯基聚氧乙烯醇处理e -玻璃纤维的物理特性","authors":"H.M. Fagerholm , C. Lindsjö , J.B. Rosenholm , K. Rökman","doi":"10.1016/0166-6622(92)80218-Q","DOIUrl":null,"url":null,"abstract":"<div><p>The adsorption of a non-ionic surfactant, alkylphenylpoly(oxyelhylene)alcohol from aqueous solutions onte industrial E-glass fibres has been followed by measurements of their surface properties (electron spectroscopy for chemical analysis (ESCA) technique), streaming/zeta potential and wetting characteristics. All three techniques indicate substantial changes in the interaction between glass fibres and water as a consequence of surfactant adsorption, although it seems that only a fraction of the total surface is covered by the surfactant. The streaming/zeta potential has been found to reflect the processability of the fibres in a realistic way, whereas the wettability of the fibres provides indirect information concerning the surface coverage and polarity of the fibres. Although the ESCA measurements are performed in ultra-high vacuum, the results are shown to give semi-quantitative information about the amount adsorbed on the surface, and correlate well with the wetting properties. All methods indicate, as expected, an enhanced absorption with increased surfactant concentration.</p></div>","PeriodicalId":10488,"journal":{"name":"Colloids and Surfaces","volume":"69 2","pages":"Pages 79-86"},"PeriodicalIF":0.0000,"publicationDate":"1992-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0166-6622(92)80218-Q","citationCount":"11","resultStr":"{\"title\":\"Physical characterization of E-glass fibres treated with alkylphenylpoly(oxyethylene)alcohol\",\"authors\":\"H.M. Fagerholm , C. Lindsjö , J.B. Rosenholm , K. Rökman\",\"doi\":\"10.1016/0166-6622(92)80218-Q\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The adsorption of a non-ionic surfactant, alkylphenylpoly(oxyelhylene)alcohol from aqueous solutions onte industrial E-glass fibres has been followed by measurements of their surface properties (electron spectroscopy for chemical analysis (ESCA) technique), streaming/zeta potential and wetting characteristics. All three techniques indicate substantial changes in the interaction between glass fibres and water as a consequence of surfactant adsorption, although it seems that only a fraction of the total surface is covered by the surfactant. The streaming/zeta potential has been found to reflect the processability of the fibres in a realistic way, whereas the wettability of the fibres provides indirect information concerning the surface coverage and polarity of the fibres. Although the ESCA measurements are performed in ultra-high vacuum, the results are shown to give semi-quantitative information about the amount adsorbed on the surface, and correlate well with the wetting properties. All methods indicate, as expected, an enhanced absorption with increased surfactant concentration.</p></div>\",\"PeriodicalId\":10488,\"journal\":{\"name\":\"Colloids and Surfaces\",\"volume\":\"69 2\",\"pages\":\"Pages 79-86\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0166-6622(92)80218-Q\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloids and Surfaces\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/016666229280218Q\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/016666229280218Q","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Physical characterization of E-glass fibres treated with alkylphenylpoly(oxyethylene)alcohol
The adsorption of a non-ionic surfactant, alkylphenylpoly(oxyelhylene)alcohol from aqueous solutions onte industrial E-glass fibres has been followed by measurements of their surface properties (electron spectroscopy for chemical analysis (ESCA) technique), streaming/zeta potential and wetting characteristics. All three techniques indicate substantial changes in the interaction between glass fibres and water as a consequence of surfactant adsorption, although it seems that only a fraction of the total surface is covered by the surfactant. The streaming/zeta potential has been found to reflect the processability of the fibres in a realistic way, whereas the wettability of the fibres provides indirect information concerning the surface coverage and polarity of the fibres. Although the ESCA measurements are performed in ultra-high vacuum, the results are shown to give semi-quantitative information about the amount adsorbed on the surface, and correlate well with the wetting properties. All methods indicate, as expected, an enhanced absorption with increased surfactant concentration.