M. Carandell, D. Toma, Carola Artero, M. Gasulla, J. Río
{"title":"基于低功耗广域网的嵌入式系统在沿海地区的实时波浪监测","authors":"M. Carandell, D. Toma, Carola Artero, M. Gasulla, J. Río","doi":"10.1109/I2MTC50364.2021.9459805","DOIUrl":null,"url":null,"abstract":"A new embedded system is presented for real-time wave monitoring on coastal areas using SigFox communication. SigFox is a Low-Power Wide-Area Network technology that has been rarely used in coastal marine monitoring. The system is based on the low-power TD1205P module that includes a microcontroller, an accelerometer, a GNSS receiver and a SigFox transceiver. Each hour, the module estimates the wave's maximum height ($H$max) and mean period (Tz), determines the GPS position, and wirelessly transmits the data through the SigFox network. The procedure for wave parameter estimation is based on the zero-upcrossing method using the vertical acceleration data. It was experimentally validated by attaching the embedded system to a moored buoy and comparing $H$max and Tzwith that provided by a seafloor acoustic wave and current profiler, used as a reference. Results over a period of two months show a good match for $H$max but less for Tz, which crosscorrelation values at zero lag of about 0.85 and 0.5, respectively. Power tests of the embedded system were also performed resulting in a lifetime estimation of 420 days with a battery pack of 3 Ah.","PeriodicalId":6772,"journal":{"name":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","volume":"20 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Real-time Wave Monitoring on Coastal Areas Using LPWAN-Based Embedded Systems\",\"authors\":\"M. Carandell, D. Toma, Carola Artero, M. Gasulla, J. Río\",\"doi\":\"10.1109/I2MTC50364.2021.9459805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new embedded system is presented for real-time wave monitoring on coastal areas using SigFox communication. SigFox is a Low-Power Wide-Area Network technology that has been rarely used in coastal marine monitoring. The system is based on the low-power TD1205P module that includes a microcontroller, an accelerometer, a GNSS receiver and a SigFox transceiver. Each hour, the module estimates the wave's maximum height ($H$max) and mean period (Tz), determines the GPS position, and wirelessly transmits the data through the SigFox network. The procedure for wave parameter estimation is based on the zero-upcrossing method using the vertical acceleration data. It was experimentally validated by attaching the embedded system to a moored buoy and comparing $H$max and Tzwith that provided by a seafloor acoustic wave and current profiler, used as a reference. Results over a period of two months show a good match for $H$max but less for Tz, which crosscorrelation values at zero lag of about 0.85 and 0.5, respectively. Power tests of the embedded system were also performed resulting in a lifetime estimation of 420 days with a battery pack of 3 Ah.\",\"PeriodicalId\":6772,\"journal\":{\"name\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"volume\":\"20 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2MTC50364.2021.9459805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2MTC50364.2021.9459805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time Wave Monitoring on Coastal Areas Using LPWAN-Based Embedded Systems
A new embedded system is presented for real-time wave monitoring on coastal areas using SigFox communication. SigFox is a Low-Power Wide-Area Network technology that has been rarely used in coastal marine monitoring. The system is based on the low-power TD1205P module that includes a microcontroller, an accelerometer, a GNSS receiver and a SigFox transceiver. Each hour, the module estimates the wave's maximum height ($H$max) and mean period (Tz), determines the GPS position, and wirelessly transmits the data through the SigFox network. The procedure for wave parameter estimation is based on the zero-upcrossing method using the vertical acceleration data. It was experimentally validated by attaching the embedded system to a moored buoy and comparing $H$max and Tzwith that provided by a seafloor acoustic wave and current profiler, used as a reference. Results over a period of two months show a good match for $H$max but less for Tz, which crosscorrelation values at zero lag of about 0.85 and 0.5, respectively. Power tests of the embedded system were also performed resulting in a lifetime estimation of 420 days with a battery pack of 3 Ah.