{"title":"数据流上连续聚合连接查询的转换","authors":"T. Tran, B. Lee","doi":"10.5626/jcse.2009.3.1.027","DOIUrl":null,"url":null,"abstract":"We address continuously processing an aggregation join query over data streams. Queries of this type involve both join and aggregation operations, with windows specified on join input streams. To our knowledge, the existing researches address join query optimization and aggregation query optimization as separate problems. Our observation, however, is that by putting them within the same scope of query optimization we can generate more efficient query execution plans. This is through more versatile query transformations, the key idea of which is to perform aggregation before join so join execution time may be reduced. This idea itself is not new (already proposed in the database area), but developing the query transformation rules faces a completely new set of challenges. In this paper, we first propose a query processing model of an aggregation join query with two key stream operators: (1) aggregation set update, which produces an aggregation set of tuples (one tuple per group) and updates it incrementally as new tuples arrive, and (2) aggregation set join, i.e., join between a stream and an aggregation set of tuples. Then, we introduce the concrete query transformation rules specialized to work with streams. The rules are far more compact and yet more general than the rules proposed in the database area. Then, we present a query processing algorithm generic to all alternative query execution plans that can be generated through the transformations, and study the performances of alternative query execution plans through extensive experiments.","PeriodicalId":37773,"journal":{"name":"Journal of Computing Science and Engineering","volume":"29 1","pages":"330-347"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transformation of Continuous Aggregation Join Queries over Data Streams\",\"authors\":\"T. Tran, B. Lee\",\"doi\":\"10.5626/jcse.2009.3.1.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address continuously processing an aggregation join query over data streams. Queries of this type involve both join and aggregation operations, with windows specified on join input streams. To our knowledge, the existing researches address join query optimization and aggregation query optimization as separate problems. Our observation, however, is that by putting them within the same scope of query optimization we can generate more efficient query execution plans. This is through more versatile query transformations, the key idea of which is to perform aggregation before join so join execution time may be reduced. This idea itself is not new (already proposed in the database area), but developing the query transformation rules faces a completely new set of challenges. In this paper, we first propose a query processing model of an aggregation join query with two key stream operators: (1) aggregation set update, which produces an aggregation set of tuples (one tuple per group) and updates it incrementally as new tuples arrive, and (2) aggregation set join, i.e., join between a stream and an aggregation set of tuples. Then, we introduce the concrete query transformation rules specialized to work with streams. The rules are far more compact and yet more general than the rules proposed in the database area. Then, we present a query processing algorithm generic to all alternative query execution plans that can be generated through the transformations, and study the performances of alternative query execution plans through extensive experiments.\",\"PeriodicalId\":37773,\"journal\":{\"name\":\"Journal of Computing Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"330-347\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computing Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5626/jcse.2009.3.1.027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5626/jcse.2009.3.1.027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Transformation of Continuous Aggregation Join Queries over Data Streams
We address continuously processing an aggregation join query over data streams. Queries of this type involve both join and aggregation operations, with windows specified on join input streams. To our knowledge, the existing researches address join query optimization and aggregation query optimization as separate problems. Our observation, however, is that by putting them within the same scope of query optimization we can generate more efficient query execution plans. This is through more versatile query transformations, the key idea of which is to perform aggregation before join so join execution time may be reduced. This idea itself is not new (already proposed in the database area), but developing the query transformation rules faces a completely new set of challenges. In this paper, we first propose a query processing model of an aggregation join query with two key stream operators: (1) aggregation set update, which produces an aggregation set of tuples (one tuple per group) and updates it incrementally as new tuples arrive, and (2) aggregation set join, i.e., join between a stream and an aggregation set of tuples. Then, we introduce the concrete query transformation rules specialized to work with streams. The rules are far more compact and yet more general than the rules proposed in the database area. Then, we present a query processing algorithm generic to all alternative query execution plans that can be generated through the transformations, and study the performances of alternative query execution plans through extensive experiments.
期刊介绍:
Journal of Computing Science and Engineering (JCSE) is a peer-reviewed quarterly journal that publishes high-quality papers on all aspects of computing science and engineering. The primary objective of JCSE is to be an authoritative international forum for delivering both theoretical and innovative applied researches in the field. JCSE publishes original research contributions, surveys, and experimental studies with scientific advances. The scope of JCSE covers all topics related to computing science and engineering, with a special emphasis on the following areas: Embedded Computing, Ubiquitous Computing, Convergence Computing, Green Computing, Smart and Intelligent Computing, Human Computing.