稀疏编码分类器的归纳共形预测器:在图像分类中的应用

Sergio Matiz, K. Barner
{"title":"稀疏编码分类器的归纳共形预测器:在图像分类中的应用","authors":"Sergio Matiz, K. Barner","doi":"10.1109/ICASSP.2019.8682740","DOIUrl":null,"url":null,"abstract":"Conformal prediction uses the degree of strangeness (nonconformity) of new data instances to determine the confidence values of new predictions. We propose an inductive conformal predictor for sparse coding classifiers, referred to as ICP-SCC. Our contribution is twofold: first, we present two nonconformity measures that produce reliable confidence values; second, we propose a batch mode active learning algorithm within the conformal prediction framework to improve classification performance by selecting training instances based on two criteria, informativeness and diversity. Experiments conducted on face and object recognition databases demonstrate that ICP-SCC improves the classification accuracy of state-of-the-art dictionary learning algorithms while producing reliable confidence values.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"14 1","pages":"3307-3311"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inductive Conformal Predictor for Sparse Coding Classifiers: Applications to Image Classification\",\"authors\":\"Sergio Matiz, K. Barner\",\"doi\":\"10.1109/ICASSP.2019.8682740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conformal prediction uses the degree of strangeness (nonconformity) of new data instances to determine the confidence values of new predictions. We propose an inductive conformal predictor for sparse coding classifiers, referred to as ICP-SCC. Our contribution is twofold: first, we present two nonconformity measures that produce reliable confidence values; second, we propose a batch mode active learning algorithm within the conformal prediction framework to improve classification performance by selecting training instances based on two criteria, informativeness and diversity. Experiments conducted on face and object recognition databases demonstrate that ICP-SCC improves the classification accuracy of state-of-the-art dictionary learning algorithms while producing reliable confidence values.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"14 1\",\"pages\":\"3307-3311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

适形预测使用新数据实例的陌生程度(不一致性)来确定新预测的置信度值。我们提出了稀疏编码分类器的归纳共形预测器,称为ICP-SCC。我们的贡献是双重的:首先,我们提出了两个产生可靠置信度值的不符合度量;其次,在保形预测框架内提出了一种批处理模式主动学习算法,通过基于信息量和多样性两个标准选择训练实例来提高分类性能。在人脸和物体识别数据库上进行的实验表明,ICP-SCC提高了最先进的字典学习算法的分类精度,同时产生了可靠的置信度值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inductive Conformal Predictor for Sparse Coding Classifiers: Applications to Image Classification
Conformal prediction uses the degree of strangeness (nonconformity) of new data instances to determine the confidence values of new predictions. We propose an inductive conformal predictor for sparse coding classifiers, referred to as ICP-SCC. Our contribution is twofold: first, we present two nonconformity measures that produce reliable confidence values; second, we propose a batch mode active learning algorithm within the conformal prediction framework to improve classification performance by selecting training instances based on two criteria, informativeness and diversity. Experiments conducted on face and object recognition databases demonstrate that ICP-SCC improves the classification accuracy of state-of-the-art dictionary learning algorithms while producing reliable confidence values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1