{"title":"求解0-1背包问题的二元社会群体优化算法","authors":"Anima Naik, Pradeep Kumar Chokkalingam","doi":"10.5267/j.dsl.2021.8.004","DOIUrl":null,"url":null,"abstract":"In this paper, we propose the binary version of the Social Group Optimization (BSGO) algorithm for solving the 0-1 knapsack problem. The standard Social Group Optimization (SGO) is used for continuous optimization problems. So a transformation function is used to convert the continuous values generated from SGO into binary ones. The experiments are carried out using both low-dimensional and high-dimensional knapsack problems. The results obtained by the BSGO algorithm are compared with other binary optimization algorithms. Experimental results reveal the superiority of the BSGO algorithm in achieving a high quality of solutions over different algorithms and prove that it is one of the best finding algorithms especially in high-dimensional cases.","PeriodicalId":38141,"journal":{"name":"Decision Science Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Binary social group optimization algorithm for solving 0-1 knapsack problem\",\"authors\":\"Anima Naik, Pradeep Kumar Chokkalingam\",\"doi\":\"10.5267/j.dsl.2021.8.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose the binary version of the Social Group Optimization (BSGO) algorithm for solving the 0-1 knapsack problem. The standard Social Group Optimization (SGO) is used for continuous optimization problems. So a transformation function is used to convert the continuous values generated from SGO into binary ones. The experiments are carried out using both low-dimensional and high-dimensional knapsack problems. The results obtained by the BSGO algorithm are compared with other binary optimization algorithms. Experimental results reveal the superiority of the BSGO algorithm in achieving a high quality of solutions over different algorithms and prove that it is one of the best finding algorithms especially in high-dimensional cases.\",\"PeriodicalId\":38141,\"journal\":{\"name\":\"Decision Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Decision Science Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5267/j.dsl.2021.8.004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.dsl.2021.8.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Binary social group optimization algorithm for solving 0-1 knapsack problem
In this paper, we propose the binary version of the Social Group Optimization (BSGO) algorithm for solving the 0-1 knapsack problem. The standard Social Group Optimization (SGO) is used for continuous optimization problems. So a transformation function is used to convert the continuous values generated from SGO into binary ones. The experiments are carried out using both low-dimensional and high-dimensional knapsack problems. The results obtained by the BSGO algorithm are compared with other binary optimization algorithms. Experimental results reveal the superiority of the BSGO algorithm in achieving a high quality of solutions over different algorithms and prove that it is one of the best finding algorithms especially in high-dimensional cases.