{"title":"Python高性能计算框架:PyTrilinos, ODIN和Seamless","authors":"K. W. Smith, W. Spotz, S. Ross-Ross","doi":"10.1109/SC.Companion.2012.83","DOIUrl":null,"url":null,"abstract":"We present three Python software projects: PyTrilinos, for calling Trilinos distributed memory HPC solvers from Python; Optimized Distributed NumPy (ODIN), for distributed array computing; and Seamless, for automatic, Just-in-time compilation of Python source code. We argue that these three projects in combination provide a framework for high-performance computing in Python. They provide this framework by supplying necessary features (in the case of ODIN and Seamless) and algorithms (in the case of ODIN and PyTrilinos) for a user to develop HPC applications. Together they address the principal limitations (real or imagined) ascribed to Python when applied to high-performance computing. A high-level overview of each project is given, including brief explanations as to how these projects work in conjunction to the benefit of end users.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"34 1","pages":"593-599"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Python HPC Framework: PyTrilinos, ODIN, and Seamless\",\"authors\":\"K. W. Smith, W. Spotz, S. Ross-Ross\",\"doi\":\"10.1109/SC.Companion.2012.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present three Python software projects: PyTrilinos, for calling Trilinos distributed memory HPC solvers from Python; Optimized Distributed NumPy (ODIN), for distributed array computing; and Seamless, for automatic, Just-in-time compilation of Python source code. We argue that these three projects in combination provide a framework for high-performance computing in Python. They provide this framework by supplying necessary features (in the case of ODIN and Seamless) and algorithms (in the case of ODIN and PyTrilinos) for a user to develop HPC applications. Together they address the principal limitations (real or imagined) ascribed to Python when applied to high-performance computing. A high-level overview of each project is given, including brief explanations as to how these projects work in conjunction to the benefit of end users.\",\"PeriodicalId\":6346,\"journal\":{\"name\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"volume\":\"34 1\",\"pages\":\"593-599\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 SC Companion: High Performance Computing, Networking Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.Companion.2012.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Python HPC Framework: PyTrilinos, ODIN, and Seamless
We present three Python software projects: PyTrilinos, for calling Trilinos distributed memory HPC solvers from Python; Optimized Distributed NumPy (ODIN), for distributed array computing; and Seamless, for automatic, Just-in-time compilation of Python source code. We argue that these three projects in combination provide a framework for high-performance computing in Python. They provide this framework by supplying necessary features (in the case of ODIN and Seamless) and algorithms (in the case of ODIN and PyTrilinos) for a user to develop HPC applications. Together they address the principal limitations (real or imagined) ascribed to Python when applied to high-performance computing. A high-level overview of each project is given, including brief explanations as to how these projects work in conjunction to the benefit of end users.