TV-MOPSO在烧结钢优化中的性能

A. Mazahery, M. Shabani
{"title":"TV-MOPSO在烧结钢优化中的性能","authors":"A. Mazahery, M. Shabani","doi":"10.4149/km_2013_6_333","DOIUrl":null,"url":null,"abstract":"During the last decade novel computational methods have been introduced in some fields of engineering sciences. In this article, we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization, called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). The mechanical and tribological behaviors of sintered steel have been experimentally investigated. TV-MOPSO is made adaptive in nature by allowing its vital parameters to change with iterations. This adaptiveness helps the algorithm to explore the search space more efficiently. A new diversity parameter has been used to ensure sufficient diversity amongst the solutions of the non-dominated fronts, while retaining at the same time the convergence to the Pareto-optimal front. K e y w o r d s: wear, steel, swarm","PeriodicalId":18519,"journal":{"name":"Metallic Materials","volume":"83 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The performance of TV-MOPSO in optimization of sintered steels\",\"authors\":\"A. Mazahery, M. Shabani\",\"doi\":\"10.4149/km_2013_6_333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the last decade novel computational methods have been introduced in some fields of engineering sciences. In this article, we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization, called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). The mechanical and tribological behaviors of sintered steel have been experimentally investigated. TV-MOPSO is made adaptive in nature by allowing its vital parameters to change with iterations. This adaptiveness helps the algorithm to explore the search space more efficiently. A new diversity parameter has been used to ensure sufficient diversity amongst the solutions of the non-dominated fronts, while retaining at the same time the convergence to the Pareto-optimal front. K e y w o r d s: wear, steel, swarm\",\"PeriodicalId\":18519,\"journal\":{\"name\":\"Metallic Materials\",\"volume\":\"83 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallic Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4149/km_2013_6_333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4149/km_2013_6_333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的十年中,新的计算方法被引入到工程科学的一些领域。在本文中,我们描述了一种新的粒子群优化(PSO)多目标优化方法,称为时变多目标粒子群优化(TV-MOPSO)。对烧结钢的力学和摩擦学性能进行了实验研究。TV-MOPSO通过允许其重要参数随迭代而变化而具有自适应特性。这种自适应有助于算法更有效地探索搜索空间。为了保证非支配前沿解之间有足够的多样性,同时又能保持收敛到pareto最优前沿,采用了一个新的多样性参数。让我们看看下面这几个词:磨损、钢铁、蜂群
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The performance of TV-MOPSO in optimization of sintered steels
During the last decade novel computational methods have been introduced in some fields of engineering sciences. In this article, we describe a novel Particle Swarm Optimization (PSO) approach to multi-objective optimization, called Time Variant Multi-Objective Particle Swarm Optimization (TV-MOPSO). The mechanical and tribological behaviors of sintered steel have been experimentally investigated. TV-MOPSO is made adaptive in nature by allowing its vital parameters to change with iterations. This adaptiveness helps the algorithm to explore the search space more efficiently. A new diversity parameter has been used to ensure sufficient diversity amongst the solutions of the non-dominated fronts, while retaining at the same time the convergence to the Pareto-optimal front. K e y w o r d s: wear, steel, swarm
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Electromagnetic welding of Al-Cu: An investigation on the thickness of sheets The effect of deformation processing on tensile ductility of magnesium alloy AZ31 Investigating the effect of reinforcing particulates on the weight loss and worn surface of compocast AMCs Determination of the thermal properties of Al-Zn-Mg alloy Characterization of tensile strength and impact toughness of autogenous PCGTA weldments of aeronautical steel and austenitic stainless steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1