为俄亥俄州制定基于影响的干旱阈值

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Hydrometeorology Pub Date : 2023-04-24 DOI:10.1175/jhm-d-22-0054.1
Ning Zhang, Zhiying Li, S. Quiring
{"title":"为俄亥俄州制定基于影响的干旱阈值","authors":"Ning Zhang, Zhiying Li, S. Quiring","doi":"10.1175/jhm-d-22-0054.1","DOIUrl":null,"url":null,"abstract":"\nDrought monitoring is critical for managing agriculture and water resources and for triggering state emergency response plans and hazard mitigation activities. Fixed thresholds serve as guidelines for the United States Drought Monitor (USDM). However, fixed drought thresholds (i.e., using the same threshold in all seasons and climate regions) may not properly reflect local conditions and impacts. Therefore, this study develops impacts-based drought thresholds that are appropriate for drought monitoring in Ohio. We examined four drought indices that are currently used by the State of Ohio: Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer’s Z-Index and Palmer Hydrological Drought Index (PHDI). Streamflow and corn yield are used as indicators of hydrological and agricultural drought impacts, respectively. Our results show that fixed thresholds tend to indicate milder drought conditions in Ohio, while the proposed impacts-based drought thresholds are more sensitive to exceptional drought (D4) conditions. The area percentage of D4 based on impacts-based drought thresholds is more strongly correlated with corn yield and streamflow. This study provides a methodology for developing local impacts-based drought thresholds that can be applied to other regions where long-term drought impact records exist to provide regionally representative depictions of conditions and improve drought monitoring.","PeriodicalId":15962,"journal":{"name":"Journal of Hydrometeorology","volume":"29 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Developing Impacts-Based Drought Thresholds for Ohio\",\"authors\":\"Ning Zhang, Zhiying Li, S. Quiring\",\"doi\":\"10.1175/jhm-d-22-0054.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nDrought monitoring is critical for managing agriculture and water resources and for triggering state emergency response plans and hazard mitigation activities. Fixed thresholds serve as guidelines for the United States Drought Monitor (USDM). However, fixed drought thresholds (i.e., using the same threshold in all seasons and climate regions) may not properly reflect local conditions and impacts. Therefore, this study develops impacts-based drought thresholds that are appropriate for drought monitoring in Ohio. We examined four drought indices that are currently used by the State of Ohio: Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer’s Z-Index and Palmer Hydrological Drought Index (PHDI). Streamflow and corn yield are used as indicators of hydrological and agricultural drought impacts, respectively. Our results show that fixed thresholds tend to indicate milder drought conditions in Ohio, while the proposed impacts-based drought thresholds are more sensitive to exceptional drought (D4) conditions. The area percentage of D4 based on impacts-based drought thresholds is more strongly correlated with corn yield and streamflow. This study provides a methodology for developing local impacts-based drought thresholds that can be applied to other regions where long-term drought impact records exist to provide regionally representative depictions of conditions and improve drought monitoring.\",\"PeriodicalId\":15962,\"journal\":{\"name\":\"Journal of Hydrometeorology\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrometeorology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jhm-d-22-0054.1\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jhm-d-22-0054.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

干旱监测对于管理农业和水资源以及启动国家应急计划和减灾活动至关重要。固定的阈值作为美国干旱监测(USDM)的指导方针。但是,固定的干旱阈值(即在所有季节和气候区域使用相同的阈值)可能不能适当地反映当地的条件和影响。因此,本研究开发了适合于俄亥俄州干旱监测的基于影响的干旱阈值。我们研究了俄亥俄州目前使用的四种干旱指数:标准化降水指数(SPI)、标准化降水-蒸散指数(SPEI)、帕尔默z指数和帕尔默水文干旱指数(PHDI)。河流流量和玉米产量分别作为水文和农业干旱影响的指标。我们的研究结果表明,固定阈值倾向于表明俄亥俄州较温和的干旱条件,而基于影响的干旱阈值对异常干旱(D4)条件更敏感。基于影响的干旱阈值的D4面积百分比与玉米产量和河流流量的相关性更强。本研究提供了一种方法,用于开发基于当地影响的干旱阈值,该阈值可应用于存在长期干旱影响记录的其他区域,以提供具有区域代表性的条件描述并改善干旱监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing Impacts-Based Drought Thresholds for Ohio
Drought monitoring is critical for managing agriculture and water resources and for triggering state emergency response plans and hazard mitigation activities. Fixed thresholds serve as guidelines for the United States Drought Monitor (USDM). However, fixed drought thresholds (i.e., using the same threshold in all seasons and climate regions) may not properly reflect local conditions and impacts. Therefore, this study develops impacts-based drought thresholds that are appropriate for drought monitoring in Ohio. We examined four drought indices that are currently used by the State of Ohio: Standardized Precipitation Index (SPI), Standardized Precipitation-Evapotranspiration Index (SPEI), Palmer’s Z-Index and Palmer Hydrological Drought Index (PHDI). Streamflow and corn yield are used as indicators of hydrological and agricultural drought impacts, respectively. Our results show that fixed thresholds tend to indicate milder drought conditions in Ohio, while the proposed impacts-based drought thresholds are more sensitive to exceptional drought (D4) conditions. The area percentage of D4 based on impacts-based drought thresholds is more strongly correlated with corn yield and streamflow. This study provides a methodology for developing local impacts-based drought thresholds that can be applied to other regions where long-term drought impact records exist to provide regionally representative depictions of conditions and improve drought monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrometeorology
Journal of Hydrometeorology 地学-气象与大气科学
CiteScore
7.40
自引率
5.30%
发文量
116
审稿时长
4-8 weeks
期刊介绍: The Journal of Hydrometeorology (JHM) (ISSN: 1525-755X; eISSN: 1525-7541) publishes research on modeling, observing, and forecasting processes related to fluxes and storage of water and energy, including interactions with the boundary layer and lower atmosphere, and processes related to precipitation, radiation, and other meteorological inputs.
期刊最新文献
Patterns and trend analysis of rain-on-snow events using passive microwave satellite data over the Canadian Arctic Archipelago since 1987 Enforcing Water Balance in Multitask Deep Learning Models for Hydrological Forecasting Upper Colorado River streamflow dependencies on summertime synoptic circulations and hydroclimate variability Analysis of drought characteristics and causes in Yunnan Province in the last 60 years (1961-2020) A machine learning approach to model over ocean tropical cyclone precipitation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1