Jianye Sui, Neeru Gandotra, C. Scharfe, M. Javanmard
{"title":"芯片上多频阻抗传感快速无标记DNA定量。","authors":"Jianye Sui, Neeru Gandotra, C. Scharfe, M. Javanmard","doi":"10.1109/EMBC.2019.8856390","DOIUrl":null,"url":null,"abstract":"DNA quantification and characterization are of critical importance in disease diagnosis and clinical analysis, while label-free technology greatly simplifies the sensing protocol as it eliminates the extra step for attaching the indicator to DNA strands. In this work, we present a novel label-free DNA detection methodology based on electrical frequency-dependent impedance. The impedance of DNA strands conjunct with streptavidin-coated magnetic beads was measured at 8 different frequencies using an electrical impedance sensor integrated on a chip. Different concentrations of 300 bp double-stranded DNA samples were used to validate our sensor. The minimum DNA amount that could be successfully detected was 0.77 ng (3.9 amol). Detecting DNA fragments using our sensor could be further reduced from currently 20 minutes to under 15 minutes.","PeriodicalId":72689,"journal":{"name":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","volume":"111 1","pages":"5670-5673"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Label-free DNA Quantification by Multi-frequency Impedance Sensing on a Chip.\",\"authors\":\"Jianye Sui, Neeru Gandotra, C. Scharfe, M. Javanmard\",\"doi\":\"10.1109/EMBC.2019.8856390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA quantification and characterization are of critical importance in disease diagnosis and clinical analysis, while label-free technology greatly simplifies the sensing protocol as it eliminates the extra step for attaching the indicator to DNA strands. In this work, we present a novel label-free DNA detection methodology based on electrical frequency-dependent impedance. The impedance of DNA strands conjunct with streptavidin-coated magnetic beads was measured at 8 different frequencies using an electrical impedance sensor integrated on a chip. Different concentrations of 300 bp double-stranded DNA samples were used to validate our sensor. The minimum DNA amount that could be successfully detected was 0.77 ng (3.9 amol). Detecting DNA fragments using our sensor could be further reduced from currently 20 minutes to under 15 minutes.\",\"PeriodicalId\":72689,\"journal\":{\"name\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"volume\":\"111 1\",\"pages\":\"5670-5673\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMBC.2019.8856390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBC.2019.8856390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
DNA定量和表征在疾病诊断和临床分析中至关重要,而无标记技术极大地简化了传感方案,因为它消除了将指示剂附着在DNA链上的额外步骤。在这项工作中,我们提出了一种基于电频率相关阻抗的新型无标记DNA检测方法。利用集成在芯片上的电阻抗传感器,在8种不同频率下测量了DNA链与链亲和素涂层磁珠结合的阻抗。使用不同浓度的300 bp双链DNA样本来验证我们的传感器。成功检测到的最小DNA量为0.77 ng (3.9 amol)。使用我们的传感器检测DNA片段可以进一步缩短,从目前的20分钟缩短到15分钟以下。
Rapid Label-free DNA Quantification by Multi-frequency Impedance Sensing on a Chip.
DNA quantification and characterization are of critical importance in disease diagnosis and clinical analysis, while label-free technology greatly simplifies the sensing protocol as it eliminates the extra step for attaching the indicator to DNA strands. In this work, we present a novel label-free DNA detection methodology based on electrical frequency-dependent impedance. The impedance of DNA strands conjunct with streptavidin-coated magnetic beads was measured at 8 different frequencies using an electrical impedance sensor integrated on a chip. Different concentrations of 300 bp double-stranded DNA samples were used to validate our sensor. The minimum DNA amount that could be successfully detected was 0.77 ng (3.9 amol). Detecting DNA fragments using our sensor could be further reduced from currently 20 minutes to under 15 minutes.