{"title":"生理条件下原始石墨烯上双链DNA的部分变性","authors":"Fernando J. A. L. Cruz, J. Mota","doi":"10.3390/liquids3020013","DOIUrl":null,"url":null,"abstract":"Interactions between DNA and graphene are paramount for a wide range of applications, such as biosensing and nanoelectronics; nonetheless, the molecular details of such interactions remain largely unexplored. We employ atomically detailed molecular dynamics simulations with an enhanced sampling technique to investigate the adsorption and mobility of double-stranded DNA along the basal plane of graphene, in an electrolytic aqueous medium. The study focuses on physiologically relevant conditions, using a buffer of [NaCl] = 134 mM. DNA physisorption is shown to be fast and irreversible, leading to deformation and partial melting of the double helix as a result of π–π stacking between the terminal nucleobases and graphene. Denaturation occurs primarily at the termini, with ensemble averaged H-bond ratios of 47.8–62%; these can, however, reach a minimum of 15%. Transition between free-energy minima occurs via a thermodynamical pathway driving the nucleic acid from a radius of gyration of 1.5 nm to 1.35 nm. Mobility along the basal plane of graphene is dominant, accounting for ~90% of all centre-of-mass translation and revealing that the DNA’s apparent diffusivity is similar to diffusion along the endohedral volume of carbon nanotubes, but one order of magnitude faster than in other 2D materials, such as BC3 and C3N.","PeriodicalId":20094,"journal":{"name":"Physics and Chemistry of Liquids","volume":"38 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Denaturation of Double-Stranded DNA on Pristine Graphene under Physiological-like Conditions\",\"authors\":\"Fernando J. A. L. Cruz, J. Mota\",\"doi\":\"10.3390/liquids3020013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interactions between DNA and graphene are paramount for a wide range of applications, such as biosensing and nanoelectronics; nonetheless, the molecular details of such interactions remain largely unexplored. We employ atomically detailed molecular dynamics simulations with an enhanced sampling technique to investigate the adsorption and mobility of double-stranded DNA along the basal plane of graphene, in an electrolytic aqueous medium. The study focuses on physiologically relevant conditions, using a buffer of [NaCl] = 134 mM. DNA physisorption is shown to be fast and irreversible, leading to deformation and partial melting of the double helix as a result of π–π stacking between the terminal nucleobases and graphene. Denaturation occurs primarily at the termini, with ensemble averaged H-bond ratios of 47.8–62%; these can, however, reach a minimum of 15%. Transition between free-energy minima occurs via a thermodynamical pathway driving the nucleic acid from a radius of gyration of 1.5 nm to 1.35 nm. Mobility along the basal plane of graphene is dominant, accounting for ~90% of all centre-of-mass translation and revealing that the DNA’s apparent diffusivity is similar to diffusion along the endohedral volume of carbon nanotubes, but one order of magnitude faster than in other 2D materials, such as BC3 and C3N.\",\"PeriodicalId\":20094,\"journal\":{\"name\":\"Physics and Chemistry of Liquids\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Chemistry of Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/liquids3020013\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Liquids","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/liquids3020013","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Partial Denaturation of Double-Stranded DNA on Pristine Graphene under Physiological-like Conditions
Interactions between DNA and graphene are paramount for a wide range of applications, such as biosensing and nanoelectronics; nonetheless, the molecular details of such interactions remain largely unexplored. We employ atomically detailed molecular dynamics simulations with an enhanced sampling technique to investigate the adsorption and mobility of double-stranded DNA along the basal plane of graphene, in an electrolytic aqueous medium. The study focuses on physiologically relevant conditions, using a buffer of [NaCl] = 134 mM. DNA physisorption is shown to be fast and irreversible, leading to deformation and partial melting of the double helix as a result of π–π stacking between the terminal nucleobases and graphene. Denaturation occurs primarily at the termini, with ensemble averaged H-bond ratios of 47.8–62%; these can, however, reach a minimum of 15%. Transition between free-energy minima occurs via a thermodynamical pathway driving the nucleic acid from a radius of gyration of 1.5 nm to 1.35 nm. Mobility along the basal plane of graphene is dominant, accounting for ~90% of all centre-of-mass translation and revealing that the DNA’s apparent diffusivity is similar to diffusion along the endohedral volume of carbon nanotubes, but one order of magnitude faster than in other 2D materials, such as BC3 and C3N.
期刊介绍:
Physics and Chemistry of Liquids publishes experimental and theoretical papers, letters and reviews aimed at furthering the understanding of the liquid state. The coverage embraces the whole spectrum of liquids, from simple monatomic liquids and their mixtures, through charged liquids (e.g. ionic melts, liquid metals and their alloys, ions in aqueous solution, and metal-electrolyte systems) to molecular liquids of all kinds. It also covers quantum fluids and superfluids, such as Fermi and non-Fermi liquids, superconductors, Bose-Einstein condensates, correlated electron or spin assemblies.
By publishing papers on physical aspects of the liquid state as well as those with a mainly chemical focus, Physics and Chemistry of Liquids provides a medium for the publication of interdisciplinary papers on liquids serving its broad international readership of physicists and chemists.