S. Puliti, Jonathan P. Dash, M. Watt, J. Breidenbach, Grant D. Pearse
{"title":"无人机激光扫描、摄影测量和机载激光扫描在小森林属性精确清查中的比较","authors":"S. Puliti, Jonathan P. Dash, M. Watt, J. Breidenbach, Grant D. Pearse","doi":"10.1093/forestry/cpz057","DOIUrl":null,"url":null,"abstract":"This study addresses the use of multiple sources of auxiliary data from unmanned aerial vehicles (UAVs) and airborne laser scanning (ALS) data for inference on key biophysical parameters in small forest properties (5–300 ha). We compared the precision of the estimates using plot data alone under a design-based inference with model-based estimates that include plot data and the following four types of auxiliary data: (1) terrain-independent variables from UAV photogrammetric data (UAV-SfM); (2) variables obtained from UAV photogrammetric data normalized using external terrain data (UAV-SfMDTM); (3) UAV-LS and (4) ALS data. The inclusion of remotely sensed data increased the precision of DB estimates by factors of 1.5–2.2. The optimal data sources for top height, stem density, basal area and total stem volume were: UAV-LS, UAV-SfM, UAV-SfMDTM and UAV-SfMDTM. We conclude that the use of UAV data can increase the precision of stand-level estimates even under intensive field sampling conditions.","PeriodicalId":12342,"journal":{"name":"Forestry","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2020-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"A comparison of UAV laser scanning, photogrammetry and airborne laser scanning for precision inventory of small-forest properties\",\"authors\":\"S. Puliti, Jonathan P. Dash, M. Watt, J. Breidenbach, Grant D. Pearse\",\"doi\":\"10.1093/forestry/cpz057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study addresses the use of multiple sources of auxiliary data from unmanned aerial vehicles (UAVs) and airborne laser scanning (ALS) data for inference on key biophysical parameters in small forest properties (5–300 ha). We compared the precision of the estimates using plot data alone under a design-based inference with model-based estimates that include plot data and the following four types of auxiliary data: (1) terrain-independent variables from UAV photogrammetric data (UAV-SfM); (2) variables obtained from UAV photogrammetric data normalized using external terrain data (UAV-SfMDTM); (3) UAV-LS and (4) ALS data. The inclusion of remotely sensed data increased the precision of DB estimates by factors of 1.5–2.2. The optimal data sources for top height, stem density, basal area and total stem volume were: UAV-LS, UAV-SfM, UAV-SfMDTM and UAV-SfMDTM. We conclude that the use of UAV data can increase the precision of stand-level estimates even under intensive field sampling conditions.\",\"PeriodicalId\":12342,\"journal\":{\"name\":\"Forestry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forestry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/forestry/cpz057\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/forestry/cpz057","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
A comparison of UAV laser scanning, photogrammetry and airborne laser scanning for precision inventory of small-forest properties
This study addresses the use of multiple sources of auxiliary data from unmanned aerial vehicles (UAVs) and airborne laser scanning (ALS) data for inference on key biophysical parameters in small forest properties (5–300 ha). We compared the precision of the estimates using plot data alone under a design-based inference with model-based estimates that include plot data and the following four types of auxiliary data: (1) terrain-independent variables from UAV photogrammetric data (UAV-SfM); (2) variables obtained from UAV photogrammetric data normalized using external terrain data (UAV-SfMDTM); (3) UAV-LS and (4) ALS data. The inclusion of remotely sensed data increased the precision of DB estimates by factors of 1.5–2.2. The optimal data sources for top height, stem density, basal area and total stem volume were: UAV-LS, UAV-SfM, UAV-SfMDTM and UAV-SfMDTM. We conclude that the use of UAV data can increase the precision of stand-level estimates even under intensive field sampling conditions.
期刊介绍:
The journal is inclusive of all subjects, geographical zones and study locations, including trees in urban environments, plantations and natural forests. We welcome papers that consider economic, environmental and social factors and, in particular, studies that take an integrated approach to sustainable management. In considering suitability for publication, attention is given to the originality of contributions and their likely impact on policy and practice, as well as their contribution to the development of knowledge.
Special Issues - each year one edition of Forestry will be a Special Issue and will focus on one subject in detail; this will usually be by publication of the proceedings of an international meeting.