M. Jacquot, R. Lavrov, J. Oden, Y. Chembo, M. Nguimdo, P. Colet, L. Larger
{"title":"现场实验光混沌通信@ 10Gb/s演示电光相位混沌原理","authors":"M. Jacquot, R. Lavrov, J. Oden, Y. Chembo, M. Nguimdo, P. Colet, L. Larger","doi":"10.1109/CLEOE.2011.5942987","DOIUrl":null,"url":null,"abstract":"Electro-optic nonlinear delay dynamics are one of the main alternative approach to external cavity semiconductor lasers, in the context of experimental optical chaos communications setups. In the frame of a recently accomplished European project (PICASSO, FP6-IST-2006-34551), we have demonstrated state of the art performances with a novel electro-optic approach involving the generation of chaotic optical phase broadband carrier from delayed nonlinear non-local feedback oscillator, capable of high quality distant chaos synchronization over a bandwidth exceeding 15 GHz. Our latest investigations were concerned by the demonstration of unprecedented 10Gb/s field experiment of optical chaos communication, by the investigation of the critical dispersion issues in broadband electro-optic optical chaos, and by the implementation of flexible and reliable physical key-components based security, as well as by the study of the enhanced robustness versus time delay identification for the non-local phase chaos dynamics driven by a pseudo random bit sequence.","PeriodicalId":6331,"journal":{"name":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","volume":"53 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Field experiment optical chaos communication @ 10Gb/s demonstrating electro-optic phase chaos principles\",\"authors\":\"M. Jacquot, R. Lavrov, J. Oden, Y. Chembo, M. Nguimdo, P. Colet, L. Larger\",\"doi\":\"10.1109/CLEOE.2011.5942987\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electro-optic nonlinear delay dynamics are one of the main alternative approach to external cavity semiconductor lasers, in the context of experimental optical chaos communications setups. In the frame of a recently accomplished European project (PICASSO, FP6-IST-2006-34551), we have demonstrated state of the art performances with a novel electro-optic approach involving the generation of chaotic optical phase broadband carrier from delayed nonlinear non-local feedback oscillator, capable of high quality distant chaos synchronization over a bandwidth exceeding 15 GHz. Our latest investigations were concerned by the demonstration of unprecedented 10Gb/s field experiment of optical chaos communication, by the investigation of the critical dispersion issues in broadband electro-optic optical chaos, and by the implementation of flexible and reliable physical key-components based security, as well as by the study of the enhanced robustness versus time delay identification for the non-local phase chaos dynamics driven by a pseudo random bit sequence.\",\"PeriodicalId\":6331,\"journal\":{\"name\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"volume\":\"53 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEOE.2011.5942987\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE.2011.5942987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Field experiment optical chaos communication @ 10Gb/s demonstrating electro-optic phase chaos principles
Electro-optic nonlinear delay dynamics are one of the main alternative approach to external cavity semiconductor lasers, in the context of experimental optical chaos communications setups. In the frame of a recently accomplished European project (PICASSO, FP6-IST-2006-34551), we have demonstrated state of the art performances with a novel electro-optic approach involving the generation of chaotic optical phase broadband carrier from delayed nonlinear non-local feedback oscillator, capable of high quality distant chaos synchronization over a bandwidth exceeding 15 GHz. Our latest investigations were concerned by the demonstration of unprecedented 10Gb/s field experiment of optical chaos communication, by the investigation of the critical dispersion issues in broadband electro-optic optical chaos, and by the implementation of flexible and reliable physical key-components based security, as well as by the study of the enhanced robustness versus time delay identification for the non-local phase chaos dynamics driven by a pseudo random bit sequence.