{"title":"具有通信和质量增强的正弦余弦算法:工程问题的性能设计","authors":"Helong Yu, Zisong Zhao, Jing Zhou, Ali Asghar Heidari, Huiling Chen","doi":"10.1093/jcde/qwad073","DOIUrl":null,"url":null,"abstract":"\n In recent years, the Sine Cosine Algorithm (SCA) has become one of the popular swarm intelligence algorithms due to its simple and convenient structure. However, the standard SCA tends to fall into the local optimum when solving complex multimodal tasks, leading to unsatisfactory results. Therefore, this study presents the SCA with communication and quality enhancement, called CCEQSCA. The proposed algorithm includes two enhancement strategies: the communication and collaboration strategy (CC) and the quality enhancement strategy (EQ). In the proposed algorithm, CC strengthens the connection of SCA populations by guiding the search agents closer to the range of optimal solutions. EQ improves the quality of candidate solutions to enhance the exploitation of the algorithm. Furthermore, EQ can explore potential candidate solutions in other scopes, thus strengthening the ability of the algorithm to prevent trapping in the local optimum. To verify the capability of CCEQSCA, 30 functions from the IEEE CEC2017 are analyzed. The proposed algorithm is compared with 5 advanced original algorithms and 10 advanced variants. The outcomes indicate that it is dominant over other comparison algorithms in global optimization tasks. The work in this paper is also utilized to tackle three typical engineering design problems with excellent optimization capabilities. It has been experimentally demonstrated that CCEQSCA works as an effective tool to tackle real issues with constraints and complex search space.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sine cosine algorithm with communication and quality enhancement: Performance design for engineering problems\",\"authors\":\"Helong Yu, Zisong Zhao, Jing Zhou, Ali Asghar Heidari, Huiling Chen\",\"doi\":\"10.1093/jcde/qwad073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In recent years, the Sine Cosine Algorithm (SCA) has become one of the popular swarm intelligence algorithms due to its simple and convenient structure. However, the standard SCA tends to fall into the local optimum when solving complex multimodal tasks, leading to unsatisfactory results. Therefore, this study presents the SCA with communication and quality enhancement, called CCEQSCA. The proposed algorithm includes two enhancement strategies: the communication and collaboration strategy (CC) and the quality enhancement strategy (EQ). In the proposed algorithm, CC strengthens the connection of SCA populations by guiding the search agents closer to the range of optimal solutions. EQ improves the quality of candidate solutions to enhance the exploitation of the algorithm. Furthermore, EQ can explore potential candidate solutions in other scopes, thus strengthening the ability of the algorithm to prevent trapping in the local optimum. To verify the capability of CCEQSCA, 30 functions from the IEEE CEC2017 are analyzed. The proposed algorithm is compared with 5 advanced original algorithms and 10 advanced variants. The outcomes indicate that it is dominant over other comparison algorithms in global optimization tasks. The work in this paper is also utilized to tackle three typical engineering design problems with excellent optimization capabilities. It has been experimentally demonstrated that CCEQSCA works as an effective tool to tackle real issues with constraints and complex search space.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwad073\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwad073","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Sine cosine algorithm with communication and quality enhancement: Performance design for engineering problems
In recent years, the Sine Cosine Algorithm (SCA) has become one of the popular swarm intelligence algorithms due to its simple and convenient structure. However, the standard SCA tends to fall into the local optimum when solving complex multimodal tasks, leading to unsatisfactory results. Therefore, this study presents the SCA with communication and quality enhancement, called CCEQSCA. The proposed algorithm includes two enhancement strategies: the communication and collaboration strategy (CC) and the quality enhancement strategy (EQ). In the proposed algorithm, CC strengthens the connection of SCA populations by guiding the search agents closer to the range of optimal solutions. EQ improves the quality of candidate solutions to enhance the exploitation of the algorithm. Furthermore, EQ can explore potential candidate solutions in other scopes, thus strengthening the ability of the algorithm to prevent trapping in the local optimum. To verify the capability of CCEQSCA, 30 functions from the IEEE CEC2017 are analyzed. The proposed algorithm is compared with 5 advanced original algorithms and 10 advanced variants. The outcomes indicate that it is dominant over other comparison algorithms in global optimization tasks. The work in this paper is also utilized to tackle three typical engineering design problems with excellent optimization capabilities. It has been experimentally demonstrated that CCEQSCA works as an effective tool to tackle real issues with constraints and complex search space.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.