Hedong Li, Yabiao Li, Yunfeng Pan, NG P.L., C. Leung, Xin Zhao
{"title":"一种新型弧形钢纤维增强浆渗纤维混凝土的抗压性能","authors":"Hedong Li, Yabiao Li, Yunfeng Pan, NG P.L., C. Leung, Xin Zhao","doi":"10.1631/jzus.A2200405","DOIUrl":null,"url":null,"abstract":"Slurry-infiltrated fiber concrete (SIFCON) is a sort of strain hardening cement-based composite material, typically made with 5%–20% steel fibers. This study focused on a novel type of SIFCON in which hooked-end steel fibers were replaced by arc-shaped steel fibers. The quasi-static compressive properties of the SIFCON were first measured. Test results suggested that using arc-shaped steel fibers in lieu of hooked-end steel fibers increased the quasi-static compressive strength by 47.1% and the strain at peak stress by 56.3%. We attribute these improvements to new crack-resisting mechanisms, namely “fiber cross-lock”, “dual bridging”, and “confinement loops”, when the arc-shaped steel fibers are introduced into SIFCON. As high impact resistance is a special property of SIFCON that is of practical significance, the dynamic compressive properties of arc-shaped steel fiber SIFCON were studied by using an 80-mm-diameter split Hopkinson pressure bar (SHPB). The results showed that the dynamic compressive strength, dynamic increase factor (DIF), and dynamic toughness of SIFCON all increased with the strain rate. The SIFCON incorporating arc-shaped steel fibers proved to have significant advantages in structural applications requiring high impact resistance.","PeriodicalId":17508,"journal":{"name":"Journal of Zhejiang University-SCIENCE A","volume":"41 1","pages":"1-14"},"PeriodicalIF":3.3000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compressive properties of a novel slurry-infiltrated fiber concrete reinforced with arc-shaped steel fibers\",\"authors\":\"Hedong Li, Yabiao Li, Yunfeng Pan, NG P.L., C. Leung, Xin Zhao\",\"doi\":\"10.1631/jzus.A2200405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Slurry-infiltrated fiber concrete (SIFCON) is a sort of strain hardening cement-based composite material, typically made with 5%–20% steel fibers. This study focused on a novel type of SIFCON in which hooked-end steel fibers were replaced by arc-shaped steel fibers. The quasi-static compressive properties of the SIFCON were first measured. Test results suggested that using arc-shaped steel fibers in lieu of hooked-end steel fibers increased the quasi-static compressive strength by 47.1% and the strain at peak stress by 56.3%. We attribute these improvements to new crack-resisting mechanisms, namely “fiber cross-lock”, “dual bridging”, and “confinement loops”, when the arc-shaped steel fibers are introduced into SIFCON. As high impact resistance is a special property of SIFCON that is of practical significance, the dynamic compressive properties of arc-shaped steel fiber SIFCON were studied by using an 80-mm-diameter split Hopkinson pressure bar (SHPB). The results showed that the dynamic compressive strength, dynamic increase factor (DIF), and dynamic toughness of SIFCON all increased with the strain rate. The SIFCON incorporating arc-shaped steel fibers proved to have significant advantages in structural applications requiring high impact resistance.\",\"PeriodicalId\":17508,\"journal\":{\"name\":\"Journal of Zhejiang University-SCIENCE A\",\"volume\":\"41 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Zhejiang University-SCIENCE A\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/jzus.A2200405\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Zhejiang University-SCIENCE A","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/jzus.A2200405","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Compressive properties of a novel slurry-infiltrated fiber concrete reinforced with arc-shaped steel fibers
Slurry-infiltrated fiber concrete (SIFCON) is a sort of strain hardening cement-based composite material, typically made with 5%–20% steel fibers. This study focused on a novel type of SIFCON in which hooked-end steel fibers were replaced by arc-shaped steel fibers. The quasi-static compressive properties of the SIFCON were first measured. Test results suggested that using arc-shaped steel fibers in lieu of hooked-end steel fibers increased the quasi-static compressive strength by 47.1% and the strain at peak stress by 56.3%. We attribute these improvements to new crack-resisting mechanisms, namely “fiber cross-lock”, “dual bridging”, and “confinement loops”, when the arc-shaped steel fibers are introduced into SIFCON. As high impact resistance is a special property of SIFCON that is of practical significance, the dynamic compressive properties of arc-shaped steel fiber SIFCON were studied by using an 80-mm-diameter split Hopkinson pressure bar (SHPB). The results showed that the dynamic compressive strength, dynamic increase factor (DIF), and dynamic toughness of SIFCON all increased with the strain rate. The SIFCON incorporating arc-shaped steel fibers proved to have significant advantages in structural applications requiring high impact resistance.
期刊介绍:
Journal of Zhejiang University SCIENCE A covers research in Applied Physics, Mechanical and Civil Engineering, Environmental Science and Energy, Materials Science and Chemical Engineering, etc.