用于实时深度图生成的专用轻量级双目立体系统

Trevor Gee, P. Delmas, Sylvain Joly, Valentin Baron, R. Ababou, J. Nezan
{"title":"用于实时深度图生成的专用轻量级双目立体系统","authors":"Trevor Gee, P. Delmas, Sylvain Joly, Valentin Baron, R. Ababou, J. Nezan","doi":"10.1109/DASIP.2016.7853822","DOIUrl":null,"url":null,"abstract":"This work describes a light weight dedicated system, capable of generating a sequence of depth-maps computed from image streams acquired from a synchronized pair of GoPro HERO 3+ cameras in real-time. The envisioned purpose is to capture depth-maps from mid-sized drones for computer vision applications (e.g. surveillance and management of ecosystems). The implementation is of modular design, consisting of a dedicated camera synchronisation box, fast lookup based rectification system, a block matching based dense correspondence finder that uses dynamic programming, and a simple disparity-to-depth conversion module. The final output is transmitted to a server via WIFIor G4 LTE cellular Internet connection for further processing. The complete pipeline is implemented on an Android tablet. The main novelty is the system's ability to operate on small portable devices while retaining reasonable quality and real-time performance for outdoor applications. Our experimental results in estuary, forestry and dairy farming environment support this claim.","PeriodicalId":6494,"journal":{"name":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"10 1","pages":"215-221"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A dedicated lightweight binocular stereo system for real-time depth-map generation\",\"authors\":\"Trevor Gee, P. Delmas, Sylvain Joly, Valentin Baron, R. Ababou, J. Nezan\",\"doi\":\"10.1109/DASIP.2016.7853822\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes a light weight dedicated system, capable of generating a sequence of depth-maps computed from image streams acquired from a synchronized pair of GoPro HERO 3+ cameras in real-time. The envisioned purpose is to capture depth-maps from mid-sized drones for computer vision applications (e.g. surveillance and management of ecosystems). The implementation is of modular design, consisting of a dedicated camera synchronisation box, fast lookup based rectification system, a block matching based dense correspondence finder that uses dynamic programming, and a simple disparity-to-depth conversion module. The final output is transmitted to a server via WIFIor G4 LTE cellular Internet connection for further processing. The complete pipeline is implemented on an Android tablet. The main novelty is the system's ability to operate on small portable devices while retaining reasonable quality and real-time performance for outdoor applications. Our experimental results in estuary, forestry and dairy farming environment support this claim.\",\"PeriodicalId\":6494,\"journal\":{\"name\":\"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"volume\":\"10 1\",\"pages\":\"215-221\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASIP.2016.7853822\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2016.7853822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这项工作描述了一个轻量级的专用系统,能够从同步的一对GoPro HERO 3+相机实时获取的图像流中生成一系列深度图。设想的目的是从中型无人机捕获深度图,用于计算机视觉应用(例如生态系统的监视和管理)。实现采用模块化设计,包括专用摄像机同步盒、基于快速查找的纠偏系统、基于动态规划的块匹配密集对应查找器和简单的差深转换模块。最终输出通过WIFIor G4 LTE蜂窝互联网连接传输到服务器进行进一步处理。完整的流水线在Android平板电脑上实现。主要的新颖之处在于该系统能够在小型便携式设备上运行,同时保持户外应用的合理质量和实时性能。我们在河口、林业和奶牛养殖环境中的实验结果支持了这一说法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dedicated lightweight binocular stereo system for real-time depth-map generation
This work describes a light weight dedicated system, capable of generating a sequence of depth-maps computed from image streams acquired from a synchronized pair of GoPro HERO 3+ cameras in real-time. The envisioned purpose is to capture depth-maps from mid-sized drones for computer vision applications (e.g. surveillance and management of ecosystems). The implementation is of modular design, consisting of a dedicated camera synchronisation box, fast lookup based rectification system, a block matching based dense correspondence finder that uses dynamic programming, and a simple disparity-to-depth conversion module. The final output is transmitted to a server via WIFIor G4 LTE cellular Internet connection for further processing. The complete pipeline is implemented on an Android tablet. The main novelty is the system's ability to operate on small portable devices while retaining reasonable quality and real-time performance for outdoor applications. Our experimental results in estuary, forestry and dairy farming environment support this claim.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time FPGA implementation of the Semi-Global Matching stereo vision algorithm for a 4K/UHD video stream Brain Blood Vessel Segmentation in Hyperspectral Images Through Linear Operators SCAPE: HW-Aware Clustering of Dataflow Actors for Tunable Scheduling Complexity Deep Recurrent Neural Network Performing Spectral Recurrence on Hyperspectral Images for Brain Tissue Classification TaPaFuzz - An FPGA-Accelerated Framework for RISC-V IoT Graybox Fuzzing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1