引入双周期对CMUT阵列串扰的P4M-9抑制

S. Berg, A. Rønnekleiv
{"title":"引入双周期对CMUT阵列串扰的P4M-9抑制","authors":"S. Berg, A. Rønnekleiv","doi":"10.1109/ULTSYM.2007.542","DOIUrl":null,"url":null,"abstract":"Capacitive micromachined ultrasound transducers (CMUTs) promise high transducer performance for several ultrasound applications. When making a focused ultrasound image with a 90 degree image sector we need a large number of individual elements. In off-axis beam steering neighbor elements operate at different phase. This leads to unwanted acoustic effects caused by the interaction with the fluid medium outside the array. We see high-Q resonances close to the center frequency of the array at off-axis angles, which we want to reduce. The present paper gives one approach to this. The introduction of a double periodicity, with a larger distance between elements than between CMUTs within an element is investigated. Simulations show that the resonances at frequencies closest to the center frequency are reduced, while they are increased at lower frequencies. The lowermost resonances are also shifted down in frequency by 1.5-2.5% of the center frequency. An added lossy top layer with thicknesses from 10 mum to 30 mum reduces the unwanted effects to an acceptable level, but increases the center frequency of the array. The combination of added element kerf and a lossy layer result in responses with 80-100% bandwidth and less than 1.5 dB insertion loss at 0 degrees steering angle. Reoptimizing the design might increase the bandwidth.","PeriodicalId":6355,"journal":{"name":"2007 IEEE Ultrasonics Symposium Proceedings","volume":"24 1","pages":"2155-2158"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"P4M-9 Reduction of Crosstalk in CMUT Arrays by Introducing Double Periodicities\",\"authors\":\"S. Berg, A. Rønnekleiv\",\"doi\":\"10.1109/ULTSYM.2007.542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Capacitive micromachined ultrasound transducers (CMUTs) promise high transducer performance for several ultrasound applications. When making a focused ultrasound image with a 90 degree image sector we need a large number of individual elements. In off-axis beam steering neighbor elements operate at different phase. This leads to unwanted acoustic effects caused by the interaction with the fluid medium outside the array. We see high-Q resonances close to the center frequency of the array at off-axis angles, which we want to reduce. The present paper gives one approach to this. The introduction of a double periodicity, with a larger distance between elements than between CMUTs within an element is investigated. Simulations show that the resonances at frequencies closest to the center frequency are reduced, while they are increased at lower frequencies. The lowermost resonances are also shifted down in frequency by 1.5-2.5% of the center frequency. An added lossy top layer with thicknesses from 10 mum to 30 mum reduces the unwanted effects to an acceptable level, but increases the center frequency of the array. The combination of added element kerf and a lossy layer result in responses with 80-100% bandwidth and less than 1.5 dB insertion loss at 0 degrees steering angle. Reoptimizing the design might increase the bandwidth.\",\"PeriodicalId\":6355,\"journal\":{\"name\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"volume\":\"24 1\",\"pages\":\"2155-2158\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Ultrasonics Symposium Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2007.542\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Ultrasonics Symposium Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2007.542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电容式微机械超声换能器(CMUTs)为多种超声应用提供了高换能器性能。当制作具有90度图像扇区的聚焦超声图像时,我们需要大量的单个元素。在离轴波束控制中,相邻元件处于不同相位。这将导致由于与阵列外流体介质的相互作用而引起的不必要的声学效应。我们看到在离轴角的阵列中心频率附近有高q共振,我们想要减少它。本文给出了一种解决方法。研究了单元间距离比单元间距离大的双周期的引入。仿真结果表明,在接近中心频率的频率处共振减小,而在较低频率处共振增大。最低共振的频率也下降了中心频率的1.5-2.5%。增加的有损顶层厚度从10微米到30微米,将不必要的影响降低到可接受的水平,但增加了阵列的中心频率。添加的元件缺口和损耗层的组合导致响应带宽达到80-100%,并且在0度转向角时插入损耗小于1.5 dB。重新优化设计可能会增加带宽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P4M-9 Reduction of Crosstalk in CMUT Arrays by Introducing Double Periodicities
Capacitive micromachined ultrasound transducers (CMUTs) promise high transducer performance for several ultrasound applications. When making a focused ultrasound image with a 90 degree image sector we need a large number of individual elements. In off-axis beam steering neighbor elements operate at different phase. This leads to unwanted acoustic effects caused by the interaction with the fluid medium outside the array. We see high-Q resonances close to the center frequency of the array at off-axis angles, which we want to reduce. The present paper gives one approach to this. The introduction of a double periodicity, with a larger distance between elements than between CMUTs within an element is investigated. Simulations show that the resonances at frequencies closest to the center frequency are reduced, while they are increased at lower frequencies. The lowermost resonances are also shifted down in frequency by 1.5-2.5% of the center frequency. An added lossy top layer with thicknesses from 10 mum to 30 mum reduces the unwanted effects to an acceptable level, but increases the center frequency of the array. The combination of added element kerf and a lossy layer result in responses with 80-100% bandwidth and less than 1.5 dB insertion loss at 0 degrees steering angle. Reoptimizing the design might increase the bandwidth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
10B-3 Vibrating Interventional Device Detection Using Real-Time 3D Color Doppler P5E-8 The Method of Reverberation-Ray Matrix - A New Matrix Analysis of Waves in Piezoelectric Laminates P1D-4 Characteristics of a Novel Magnetic Field Sensor Using Piezoelectric Vibrations P5C-3 Field Simulation Parameters Design for Realistic Statistical Parameters of Radio - Frequency Ultrasound Images 2F-1 Fabrication and Performance of a High-Frequency Geometrically Focussed Composite Transducer with Triangular Pillar Geometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1