一个数据加载器可调旋钮来缩短分布式深度学习的GPU空闲时间

Q1 Computer Science IEEE Cloud Computing Pub Date : 2022-07-01 DOI:10.1109/CLOUD55607.2022.00068
Danlin Jia, Geng Yuan, Xue Lin, N. Mi
{"title":"一个数据加载器可调旋钮来缩短分布式深度学习的GPU空闲时间","authors":"Danlin Jia, Geng Yuan, Xue Lin, N. Mi","doi":"10.1109/CLOUD55607.2022.00068","DOIUrl":null,"url":null,"abstract":"Deep Neural Network (DNN) has been applied as an effective machine learning algorithm to tackle problems in different domains. However, training a sophisticated DNN model takes days to weeks and becomes a challenge in constructing research on large-scale DNN models. Distributed Deep Learning (DDL) contributes to accelerating DNN training by distributing training workloads across multiple computation accelerators (e.g., GPUs). Although a surge of research works has been devoted to optimizing DDL training, the impact of data-loading on GPU usage and training performance has been relatively under-explored. It is non-trivial to optimize data-loading in DDL applications that need intensive CPU and I/O resources to process enormous training data. When multiple DDL applications are deployed on a system (e.g., Cloud and HPC), the lack of a practical and efficient technique for data-loader allocation incurs GPU idleness and degrades the training throughput. Therefore, our work first focuses on investigating the impact of data-loading on the global training throughput. We then propose a throughput prediction model to predict the maximum throughput for an individual DDL training application. By leveraging the predicted results, A-Dloader is designed to dynamically allocate CPU and I/O resources to concurrently running DDL applications and use the data-loader allocation as a knob to reduce GPU idle intervals and thus improve the overall training throughput. We implement and evaluate A-Dloader in a DDL framework for a series of DDL applications arriving and completing across the runtime. Our experimental results show that A-Dloader can achieve a 23.5% throughput improvement and a 10% makespan improvement, compared to allocating resources evenly across applications.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"135 1","pages":"449-458"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Data-Loader Tunable Knob to Shorten GPU Idleness for Distributed Deep Learning\",\"authors\":\"Danlin Jia, Geng Yuan, Xue Lin, N. Mi\",\"doi\":\"10.1109/CLOUD55607.2022.00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Neural Network (DNN) has been applied as an effective machine learning algorithm to tackle problems in different domains. However, training a sophisticated DNN model takes days to weeks and becomes a challenge in constructing research on large-scale DNN models. Distributed Deep Learning (DDL) contributes to accelerating DNN training by distributing training workloads across multiple computation accelerators (e.g., GPUs). Although a surge of research works has been devoted to optimizing DDL training, the impact of data-loading on GPU usage and training performance has been relatively under-explored. It is non-trivial to optimize data-loading in DDL applications that need intensive CPU and I/O resources to process enormous training data. When multiple DDL applications are deployed on a system (e.g., Cloud and HPC), the lack of a practical and efficient technique for data-loader allocation incurs GPU idleness and degrades the training throughput. Therefore, our work first focuses on investigating the impact of data-loading on the global training throughput. We then propose a throughput prediction model to predict the maximum throughput for an individual DDL training application. By leveraging the predicted results, A-Dloader is designed to dynamically allocate CPU and I/O resources to concurrently running DDL applications and use the data-loader allocation as a knob to reduce GPU idle intervals and thus improve the overall training throughput. We implement and evaluate A-Dloader in a DDL framework for a series of DDL applications arriving and completing across the runtime. Our experimental results show that A-Dloader can achieve a 23.5% throughput improvement and a 10% makespan improvement, compared to allocating resources evenly across applications.\",\"PeriodicalId\":54281,\"journal\":{\"name\":\"IEEE Cloud Computing\",\"volume\":\"135 1\",\"pages\":\"449-458\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD55607.2022.00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

深度神经网络(Deep Neural Network, DNN)作为一种有效的机器学习算法已被应用于解决不同领域的问题。然而,训练一个复杂的深度神经网络模型需要数天到数周的时间,这对于构建大规模深度神经网络模型的研究来说是一个挑战。分布式深度学习(DDL)通过将训练工作负载分布在多个计算加速器(例如gpu)上,有助于加速DNN训练。尽管大量的研究工作致力于优化DDL训练,但数据加载对GPU使用和训练性能的影响却相对较少。在需要大量CPU和I/O资源来处理大量训练数据的DDL应用程序中,优化数据加载是非常重要的。当多个DDL应用程序部署在一个系统上(例如,云和HPC)时,缺乏实用且有效的数据加载器分配技术会导致GPU空闲并降低训练吞吐量。因此,我们的工作首先侧重于调查数据加载对全局训练吞吐量的影响。然后,我们提出了一个吞吐量预测模型来预测单个DDL训练应用程序的最大吞吐量。通过利用预测结果,a- dloader被设计为动态分配CPU和I/O资源给并发运行的DDL应用程序,并使用数据加载器分配作为旋环来减少GPU空闲间隔,从而提高整体训练吞吐量。我们在一个DDL框架中实现并评估了一系列跨运行时到达和完成的DDL应用程序的a - dloader。我们的实验结果表明,与在应用程序之间均匀分配资源相比,a - dloader可以实现23.5%的吞吐量改进和10%的完工时间改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Data-Loader Tunable Knob to Shorten GPU Idleness for Distributed Deep Learning
Deep Neural Network (DNN) has been applied as an effective machine learning algorithm to tackle problems in different domains. However, training a sophisticated DNN model takes days to weeks and becomes a challenge in constructing research on large-scale DNN models. Distributed Deep Learning (DDL) contributes to accelerating DNN training by distributing training workloads across multiple computation accelerators (e.g., GPUs). Although a surge of research works has been devoted to optimizing DDL training, the impact of data-loading on GPU usage and training performance has been relatively under-explored. It is non-trivial to optimize data-loading in DDL applications that need intensive CPU and I/O resources to process enormous training data. When multiple DDL applications are deployed on a system (e.g., Cloud and HPC), the lack of a practical and efficient technique for data-loader allocation incurs GPU idleness and degrades the training throughput. Therefore, our work first focuses on investigating the impact of data-loading on the global training throughput. We then propose a throughput prediction model to predict the maximum throughput for an individual DDL training application. By leveraging the predicted results, A-Dloader is designed to dynamically allocate CPU and I/O resources to concurrently running DDL applications and use the data-loader allocation as a knob to reduce GPU idle intervals and thus improve the overall training throughput. We implement and evaluate A-Dloader in a DDL framework for a series of DDL applications arriving and completing across the runtime. Our experimental results show that A-Dloader can achieve a 23.5% throughput improvement and a 10% makespan improvement, compared to allocating resources evenly across applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Cloud Computing
IEEE Cloud Computing Computer Science-Computer Networks and Communications
CiteScore
11.20
自引率
0.00%
发文量
0
期刊介绍: Cessation. IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)
期刊最新文献
Different in different ways: A network-analysis approach to voice and prosody in Autism Spectrum Disorder. Layered Contention Mitigation for Cloud Storage Towards More Effective and Explainable Fault Management Using Cross-Layer Service Topology Bypass Container Overlay Networks with Transparent BPF-driven Socket Replacement Event-Driven Approach for Monitoring and Orchestration of Cloud and Edge-Enabled IoT Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1