遥感数据在漫滩水体富营养化监测中的应用

IF 0.8 Q2 Environmental Science Biosystems Diversity Pub Date : 2022-05-26 DOI:10.15421/012219
E. Fedonenko, O. Kunakh, Y. Chubchenko, O. Zhukov
{"title":"遥感数据在漫滩水体富营养化监测中的应用","authors":"E. Fedonenko, O. Kunakh, Y. Chubchenko, O. Zhukov","doi":"10.15421/012219","DOIUrl":null,"url":null,"abstract":"The aim of this article was to investigate the influence of structural features of the floodplain water network on the spatial and temporal dynamics of chlorophyll-a concentration as an indicator of eutrophication. The research was conducted in the waters of the “Dnipro-Orilskiy” Nature Reserve. The geographic information base with polygonal objects which represented water bodies of the reserve was created on the basis of detailed geographical maps and the high resolution space images. The water bodies were characterized using such parameters as the distance of the water body centroid from the nearest shore of the Dnipro River, the area of the water body, the order of the water body and the connectivity of the water body. Chlorophyll-а concentration was estimated based on the surface algal bloom index. The information was obtained about 148 water bodies, 141 of which are water bodies in the floodplain of the Dnipro River. The area of floodplain water bodies within the reserve was 3.28 million m2. The area of floodplain water bodies ranged from 300–232,500 m2. Trophic State Index allows us to estimate the trophic level of Dnipro River waters as mesotrophic, water bodies of first and second order as eutrophic, and water bodies of third and fourth order as hypereutrophic. The dynamics of chlorophyll-a content in water followed the seasonal course of temperatures. The concentration was lowest in the cold period of the year and reached its maximum in the second half of summer. The autumn decrease occurred at the end of September. The seasonal course of air temperature was superimposed on the peculiarities of the temperature regime of a particular water body, which depended on its depth and flow rate. The time, water body area, distance from the Dnipro River channel, connectivity and order of water bodies were the statistically significant predictors of chlorophyll concentration in water and were able to explain 85% of the variation of this indicator. The increase in chlorophyll-a concentration with increasing order of a water body is due to a decrease in the intensity of water exchange and a decrease in the depth of water bodies of higher order. An increase in the order of a water body is accompanied by a branching network of water bodies, the ability of water bodies to clear sediments decreases. Sediment accumulation leads to a decrease in their depth. Warming of shallow ponds and accumulation of organic matter in them are factors of intensive growth of blue-green algae. The evacuation of surplus organic matter, which results from mass vegetation development with excessive nutrient inputs, is a key driver of the eutrophic regime of water bodies. The increasing importance of regulatory processes develops in agreement with an increase in chlorophyll-a concentration in a water body. The importance of the considered factors reaches the highest level in summer time, when simultaneous maximum warming of water bodies and minimum water level in them take place. Accordingly, the differences between deep and relatively cool water bodies and shallow water bodies that warm up quickly, which significantly stimulates the growth of organic mass, reach the greatest contrast. The spatial patterns of variation in chlorophyll-a concentration have a complex multiscale structure, indicating the multiple nature of the acting factors. The spatial variability was represented as a composition of broad-scale and medium-scale spatial processes. The broad-scale process is most dependent on connectivity, whereas for the medium-scale process the leading one is the effect of water body order.","PeriodicalId":44107,"journal":{"name":"Biosystems Diversity","volume":"34 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Application of remote sensing data for monitoring eutrophication of floodplain water bodies\",\"authors\":\"E. Fedonenko, O. Kunakh, Y. Chubchenko, O. Zhukov\",\"doi\":\"10.15421/012219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this article was to investigate the influence of structural features of the floodplain water network on the spatial and temporal dynamics of chlorophyll-a concentration as an indicator of eutrophication. The research was conducted in the waters of the “Dnipro-Orilskiy” Nature Reserve. The geographic information base with polygonal objects which represented water bodies of the reserve was created on the basis of detailed geographical maps and the high resolution space images. The water bodies were characterized using such parameters as the distance of the water body centroid from the nearest shore of the Dnipro River, the area of the water body, the order of the water body and the connectivity of the water body. Chlorophyll-а concentration was estimated based on the surface algal bloom index. The information was obtained about 148 water bodies, 141 of which are water bodies in the floodplain of the Dnipro River. The area of floodplain water bodies within the reserve was 3.28 million m2. The area of floodplain water bodies ranged from 300–232,500 m2. Trophic State Index allows us to estimate the trophic level of Dnipro River waters as mesotrophic, water bodies of first and second order as eutrophic, and water bodies of third and fourth order as hypereutrophic. The dynamics of chlorophyll-a content in water followed the seasonal course of temperatures. The concentration was lowest in the cold period of the year and reached its maximum in the second half of summer. The autumn decrease occurred at the end of September. The seasonal course of air temperature was superimposed on the peculiarities of the temperature regime of a particular water body, which depended on its depth and flow rate. The time, water body area, distance from the Dnipro River channel, connectivity and order of water bodies were the statistically significant predictors of chlorophyll concentration in water and were able to explain 85% of the variation of this indicator. The increase in chlorophyll-a concentration with increasing order of a water body is due to a decrease in the intensity of water exchange and a decrease in the depth of water bodies of higher order. An increase in the order of a water body is accompanied by a branching network of water bodies, the ability of water bodies to clear sediments decreases. Sediment accumulation leads to a decrease in their depth. Warming of shallow ponds and accumulation of organic matter in them are factors of intensive growth of blue-green algae. The evacuation of surplus organic matter, which results from mass vegetation development with excessive nutrient inputs, is a key driver of the eutrophic regime of water bodies. The increasing importance of regulatory processes develops in agreement with an increase in chlorophyll-a concentration in a water body. The importance of the considered factors reaches the highest level in summer time, when simultaneous maximum warming of water bodies and minimum water level in them take place. Accordingly, the differences between deep and relatively cool water bodies and shallow water bodies that warm up quickly, which significantly stimulates the growth of organic mass, reach the greatest contrast. The spatial patterns of variation in chlorophyll-a concentration have a complex multiscale structure, indicating the multiple nature of the acting factors. The spatial variability was represented as a composition of broad-scale and medium-scale spatial processes. The broad-scale process is most dependent on connectivity, whereas for the medium-scale process the leading one is the effect of water body order.\",\"PeriodicalId\":44107,\"journal\":{\"name\":\"Biosystems Diversity\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Diversity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15421/012219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Diversity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15421/012219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1

摘要

本文旨在探讨洪泛区水网结构特征对富营养化指标叶绿素-a浓度时空动态的影响。这项研究是在“第聂伯-奥里尔斯基”自然保护区的水域进行的。在详细的地理地图和高分辨率空间影像的基础上,建立了以保护区水体为代表的多边形对象的地理信息库。利用水体质心到第聂伯罗河最近岸边的距离、水体的面积、水体的顺序和水体的连通性等参数对水体进行了表征。根据表面藻华指数估算叶绿素- α浓度。获得了148个水体的资料,其中141个是第聂伯罗河洪泛区的水体。保护区内漫滩水体面积328万m2。泛滥平原水体面积300-232,500 m2。根据营养状态指数,第聂伯罗河水体的营养水平为中营养型,一、二级水体为富营养型,三、四级水体为富营养型。水体叶绿素-a含量的动态随温度的季节变化而变化。浓度在一年中寒冷期最低,在夏末达到最大值。秋季减少发生在9月底。气温的季节变化是叠加在特定水体的温度特性上的,而这种特性取决于它的深度和流量。时间、水体面积、离第聂伯罗河道的距离、水体连通性和顺序是水体叶绿素浓度的显著预测因子,能够解释85%的叶绿素浓度变化。叶绿素-a浓度随水体等级的增加而增加,是由于水体交换强度的降低和高等级水体深度的减小。水体阶数的增加伴随着水体的分支网络,水体清除沉积物的能力下降。泥沙淤积导致其深度减小。浅池升温和水体有机质积累是蓝绿藻密集生长的重要因素。由于大量植被发育和过量的养分输入,过剩有机物的排出是水体富营养化的关键驱动因素。调节过程的重要性与水体中叶绿素-a浓度的增加是一致的。各因素的重要性在夏季达到最高水平,此时水体温度最高,水位最低。因此,较深较冷的水体与快速升温的浅水水体之间的差异达到最大,浅水水体明显刺激了有机物的生长。叶绿素-a浓度变化的空间格局具有复杂的多尺度结构,表明了作用因子的多重性。空间变异性表现为大尺度和中尺度空间过程的组合。大尺度过程最依赖于连通性,而中尺度过程的主导作用是水体秩序的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of remote sensing data for monitoring eutrophication of floodplain water bodies
The aim of this article was to investigate the influence of structural features of the floodplain water network on the spatial and temporal dynamics of chlorophyll-a concentration as an indicator of eutrophication. The research was conducted in the waters of the “Dnipro-Orilskiy” Nature Reserve. The geographic information base with polygonal objects which represented water bodies of the reserve was created on the basis of detailed geographical maps and the high resolution space images. The water bodies were characterized using such parameters as the distance of the water body centroid from the nearest shore of the Dnipro River, the area of the water body, the order of the water body and the connectivity of the water body. Chlorophyll-а concentration was estimated based on the surface algal bloom index. The information was obtained about 148 water bodies, 141 of which are water bodies in the floodplain of the Dnipro River. The area of floodplain water bodies within the reserve was 3.28 million m2. The area of floodplain water bodies ranged from 300–232,500 m2. Trophic State Index allows us to estimate the trophic level of Dnipro River waters as mesotrophic, water bodies of first and second order as eutrophic, and water bodies of third and fourth order as hypereutrophic. The dynamics of chlorophyll-a content in water followed the seasonal course of temperatures. The concentration was lowest in the cold period of the year and reached its maximum in the second half of summer. The autumn decrease occurred at the end of September. The seasonal course of air temperature was superimposed on the peculiarities of the temperature regime of a particular water body, which depended on its depth and flow rate. The time, water body area, distance from the Dnipro River channel, connectivity and order of water bodies were the statistically significant predictors of chlorophyll concentration in water and were able to explain 85% of the variation of this indicator. The increase in chlorophyll-a concentration with increasing order of a water body is due to a decrease in the intensity of water exchange and a decrease in the depth of water bodies of higher order. An increase in the order of a water body is accompanied by a branching network of water bodies, the ability of water bodies to clear sediments decreases. Sediment accumulation leads to a decrease in their depth. Warming of shallow ponds and accumulation of organic matter in them are factors of intensive growth of blue-green algae. The evacuation of surplus organic matter, which results from mass vegetation development with excessive nutrient inputs, is a key driver of the eutrophic regime of water bodies. The increasing importance of regulatory processes develops in agreement with an increase in chlorophyll-a concentration in a water body. The importance of the considered factors reaches the highest level in summer time, when simultaneous maximum warming of water bodies and minimum water level in them take place. Accordingly, the differences between deep and relatively cool water bodies and shallow water bodies that warm up quickly, which significantly stimulates the growth of organic mass, reach the greatest contrast. The spatial patterns of variation in chlorophyll-a concentration have a complex multiscale structure, indicating the multiple nature of the acting factors. The spatial variability was represented as a composition of broad-scale and medium-scale spatial processes. The broad-scale process is most dependent on connectivity, whereas for the medium-scale process the leading one is the effect of water body order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Comprehensive review of morphological adaptations and conservation strategies of cactiform succulents: A case study of Euphorbia species in arid ecosystems Body-weight gains in Blaberus craniifer cockroaches and the intensity of their infection with gregarines and nematodes Antifungal activity of the endophytic Aspergillus against Candida albicans Sensitivity of non-target groups of invertebrates to cypermethrin Dependence of some physiological indicators of generative and vegetative organs of Sambucus nigra on habitat conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1