迁移学习在页岩储层产量预测中的应用

Uchenna Odi, K. Ayeni, Nouf Alsulaiman, Karri Reddy, Kathy Ball, Mustafa A. Basri, C. Temizel
{"title":"迁移学习在页岩储层产量预测中的应用","authors":"Uchenna Odi, K. Ayeni, Nouf Alsulaiman, Karri Reddy, Kathy Ball, Mustafa A. Basri, C. Temizel","doi":"10.2118/204784-ms","DOIUrl":null,"url":null,"abstract":"\n There are documented cases of machine learning being applied to different segments of the oil and gas industry with different levels of success. These successes have not been readily transferred to production forecasting for unconventional oil and gas reservoirs because of sparsity of production data at the early stage of production. Sparsity of unconventional production data is a challenge, but transfer learning can mitigate this challenge.\n Application of machine learning for production forecasting is challenging in areas with insufficient data. Transfer learning makes it possible to carry over the information gathered from well-established areas with rich data to areas with relatively limited data. This study outlines the background theory along with the application of transfer learning in unconventionals to aid in production forecasting. Similarity metrics are utilized in finding candidates for transfer learning by using key drivers for reservoir performance. Key drivers include similar reservoir mechanisms and subsurface structures. After training the model on a related field with rich data, most of the primary parameters learned and stored in a representative machine or deep learning model can be re-used in a transfer learning manner. By employing the already learned basic features, models with sparse data have been enriched by using transfer learning. The approach has been outlined in a stepwise manner with details.\n With the help of the insights transferred from related sites with rich data, the uncertainty in production forecasting has decreased, and the accuracy of the predictions increased. As a result, the details of selecting a related site to be used for transfer learning along with the challenges and steps in achieving the forecasts have been outlined in detail.\n There are limited studies in oil and gas literature on transfer learning for oil and gas reservoirs. If applied with care, it is a powerful method for increasing the success of models with sparse data. This study uses transfer learning to encapsulate the basics of the substructure of a well-known area and uses this information to empower the model. This study investigates the application to unconventional shale reservoirs, which have limited studies on transfer learning.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Applied Transfer Learning for Production Forecasting in Shale Reservoirs\",\"authors\":\"Uchenna Odi, K. Ayeni, Nouf Alsulaiman, Karri Reddy, Kathy Ball, Mustafa A. Basri, C. Temizel\",\"doi\":\"10.2118/204784-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n There are documented cases of machine learning being applied to different segments of the oil and gas industry with different levels of success. These successes have not been readily transferred to production forecasting for unconventional oil and gas reservoirs because of sparsity of production data at the early stage of production. Sparsity of unconventional production data is a challenge, but transfer learning can mitigate this challenge.\\n Application of machine learning for production forecasting is challenging in areas with insufficient data. Transfer learning makes it possible to carry over the information gathered from well-established areas with rich data to areas with relatively limited data. This study outlines the background theory along with the application of transfer learning in unconventionals to aid in production forecasting. Similarity metrics are utilized in finding candidates for transfer learning by using key drivers for reservoir performance. Key drivers include similar reservoir mechanisms and subsurface structures. After training the model on a related field with rich data, most of the primary parameters learned and stored in a representative machine or deep learning model can be re-used in a transfer learning manner. By employing the already learned basic features, models with sparse data have been enriched by using transfer learning. The approach has been outlined in a stepwise manner with details.\\n With the help of the insights transferred from related sites with rich data, the uncertainty in production forecasting has decreased, and the accuracy of the predictions increased. As a result, the details of selecting a related site to be used for transfer learning along with the challenges and steps in achieving the forecasts have been outlined in detail.\\n There are limited studies in oil and gas literature on transfer learning for oil and gas reservoirs. If applied with care, it is a powerful method for increasing the success of models with sparse data. This study uses transfer learning to encapsulate the basics of the substructure of a well-known area and uses this information to empower the model. This study investigates the application to unconventional shale reservoirs, which have limited studies on transfer learning.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204784-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204784-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器学习应用于石油和天然气行业的不同领域,取得了不同程度的成功。由于早期生产数据的稀疏性,这些成功的方法还不能很容易地应用到非常规油气藏的生产预测中。非常规生产数据的稀疏性是一个挑战,但迁移学习可以缓解这一挑战。在数据不足的领域,机器学习在生产预测中的应用具有挑战性。迁移学习可以将从数据丰富的成熟领域收集到的信息转移到数据相对有限的领域。本研究概述了背景理论以及迁移学习在非常规油气生产预测中的应用。通过使用油藏性能的关键驱动因素,利用相似性度量来寻找迁移学习的候选对象。关键驱动因素包括相似的储层机制和地下构造。在具有丰富数据的相关领域对模型进行训练后,学习并存储在代表性机器或深度学习模型中的大部分主要参数可以以迁移学习的方式重复使用。利用已经学习到的基本特征,利用迁移学习对稀疏数据模型进行丰富。这一办法已逐步详细地加以概述。借助丰富数据的相关站点传递的见解,降低了生产预测的不确定性,提高了预测的准确性。因此,选择用于迁移学习的相关站点的细节以及实现预测的挑战和步骤已被详细概述。油气文献中关于油气藏迁移学习的研究较少。如果使用得当,它是提高稀疏数据模型成功率的有力方法。本研究使用迁移学习来封装已知区域子结构的基础知识,并使用这些信息来增强模型。在非常规页岩储层中,迁移学习的研究非常有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applied Transfer Learning for Production Forecasting in Shale Reservoirs
There are documented cases of machine learning being applied to different segments of the oil and gas industry with different levels of success. These successes have not been readily transferred to production forecasting for unconventional oil and gas reservoirs because of sparsity of production data at the early stage of production. Sparsity of unconventional production data is a challenge, but transfer learning can mitigate this challenge. Application of machine learning for production forecasting is challenging in areas with insufficient data. Transfer learning makes it possible to carry over the information gathered from well-established areas with rich data to areas with relatively limited data. This study outlines the background theory along with the application of transfer learning in unconventionals to aid in production forecasting. Similarity metrics are utilized in finding candidates for transfer learning by using key drivers for reservoir performance. Key drivers include similar reservoir mechanisms and subsurface structures. After training the model on a related field with rich data, most of the primary parameters learned and stored in a representative machine or deep learning model can be re-used in a transfer learning manner. By employing the already learned basic features, models with sparse data have been enriched by using transfer learning. The approach has been outlined in a stepwise manner with details. With the help of the insights transferred from related sites with rich data, the uncertainty in production forecasting has decreased, and the accuracy of the predictions increased. As a result, the details of selecting a related site to be used for transfer learning along with the challenges and steps in achieving the forecasts have been outlined in detail. There are limited studies in oil and gas literature on transfer learning for oil and gas reservoirs. If applied with care, it is a powerful method for increasing the success of models with sparse data. This study uses transfer learning to encapsulate the basics of the substructure of a well-known area and uses this information to empower the model. This study investigates the application to unconventional shale reservoirs, which have limited studies on transfer learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How Leaders Can Shape the Oil & Gas Industry – Accelerating Innovations Through Business & Environmental Intelligent Systems High Performance Friction Reducer for Slickwater Fracturing Applications: Laboratory Study and Field Implementation CO2 Waterless Fracturing and Huff and Puff in Tight Oil Reservoir Switched Reluctance Motor for Electric Submersible Pump Sparse Water Fracture Channel Detection from Subsurface Sensors Via a Smart Orthogonal Matching Pursuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1