基于自适应核选择的高效在线多任务学习

Peng Yang, P. Li
{"title":"基于自适应核选择的高效在线多任务学习","authors":"Peng Yang, P. Li","doi":"10.1145/3366423.3379993","DOIUrl":null,"url":null,"abstract":"Conventional multi-task model restricts the task structure to be linearly related, which may not be suitable when data is linearly nonseparable. To remedy this issue, we propose a kernel algorithm for online multi-task classification, as the large approximation space provided by reproducing kernel Hilbert spaces often contains an accurate function. Specifically, it maintains a local-global Gaussian distribution over each task model that guides the direction and scale of parameter updates. Nonetheless, optimizing over this space is computationally expensive. Moreover, most multi-task learning methods require accessing to the entire training instances, which is luxury unavailable in the large-scale streaming learning scenario. To overcome this issue, we propose a randomized kernel sampling technique across multiple tasks. Instead of requiring all inputs’ labels, the proposed algorithm determines whether to query a label or not via considering the confidence from the related tasks over label prediction. Theoretically, the algorithm trained on actively sampled labels can achieve a comparable result with one learned on all labels. Empirically, the proposed algorithm is able to achieve promising learning efficacy, while reducing the computational complexity and labeling cost simultaneously.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Efficient Online Multi-Task Learning via Adaptive Kernel Selection\",\"authors\":\"Peng Yang, P. Li\",\"doi\":\"10.1145/3366423.3379993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional multi-task model restricts the task structure to be linearly related, which may not be suitable when data is linearly nonseparable. To remedy this issue, we propose a kernel algorithm for online multi-task classification, as the large approximation space provided by reproducing kernel Hilbert spaces often contains an accurate function. Specifically, it maintains a local-global Gaussian distribution over each task model that guides the direction and scale of parameter updates. Nonetheless, optimizing over this space is computationally expensive. Moreover, most multi-task learning methods require accessing to the entire training instances, which is luxury unavailable in the large-scale streaming learning scenario. To overcome this issue, we propose a randomized kernel sampling technique across multiple tasks. Instead of requiring all inputs’ labels, the proposed algorithm determines whether to query a label or not via considering the confidence from the related tasks over label prediction. Theoretically, the algorithm trained on actively sampled labels can achieve a comparable result with one learned on all labels. Empirically, the proposed algorithm is able to achieve promising learning efficacy, while reducing the computational complexity and labeling cost simultaneously.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3379993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3379993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的多任务模型将任务结构限制为线性相关,这可能不适用于数据线性不可分的情况。为了解决这个问题,我们提出了一个在线多任务分类的核算法,因为通过复制核希尔伯特空间提供的大近似空间通常包含一个精确的函数。具体来说,它在每个任务模型上维护一个局部全局高斯分布,指导参数更新的方向和规模。尽管如此,在这个空间上进行优化在计算上是昂贵的。此外,大多数多任务学习方法需要访问整个训练实例,这在大规模流学习场景中是不可用的。为了克服这个问题,我们提出了一种跨多个任务的随机核采样技术。该算法不需要所有输入的标签,而是通过考虑相关任务对标签预测的置信度来决定是否查询标签。从理论上讲,在主动采样标签上训练的算法可以获得与在所有标签上学习的算法相当的结果。经验表明,该算法在降低计算复杂度和标注成本的同时,取得了良好的学习效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Online Multi-Task Learning via Adaptive Kernel Selection
Conventional multi-task model restricts the task structure to be linearly related, which may not be suitable when data is linearly nonseparable. To remedy this issue, we propose a kernel algorithm for online multi-task classification, as the large approximation space provided by reproducing kernel Hilbert spaces often contains an accurate function. Specifically, it maintains a local-global Gaussian distribution over each task model that guides the direction and scale of parameter updates. Nonetheless, optimizing over this space is computationally expensive. Moreover, most multi-task learning methods require accessing to the entire training instances, which is luxury unavailable in the large-scale streaming learning scenario. To overcome this issue, we propose a randomized kernel sampling technique across multiple tasks. Instead of requiring all inputs’ labels, the proposed algorithm determines whether to query a label or not via considering the confidence from the related tasks over label prediction. Theoretically, the algorithm trained on actively sampled labels can achieve a comparable result with one learned on all labels. Empirically, the proposed algorithm is able to achieve promising learning efficacy, while reducing the computational complexity and labeling cost simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1