二氧化碳排放约束下的核电发展选择

O. Marchenko, S. Solomin
{"title":"二氧化碳排放约束下的核电发展选择","authors":"O. Marchenko, S. Solomin","doi":"10.26583/npe.2022.2.01","DOIUrl":null,"url":null,"abstract":"The aim of the work is forecasting the development of nuclear power in Russia and the world for the period up to 2050 under various scenarios of constraints on carbon dioxide emissions. A brief comparative analysis of the main characteristics of the forecasts of the International Energy Agency (IEA) and the International Renewable Energy Agency (IRENA) has been carried out. Additionally, calculations were performed using the mathematical models of the world energy system GEM and GEM-Dyn developed at the ISEM SB RAS. The optimal ratio of nuclear and non-nuclear energy sources has been determined. It is shown that nuclear power, including nuclear power plants operating on a closed fuel cycle, along with renewable energy sources, is an effective technology that can solve the problem of reducing carbon dioxide emissions. Calculations have shown that in the sustainable development scenario, the capacity of nuclear power plants in Russia in the period from 2020 to 2050 can increase by 2.7 times, and their share in electricity generation can reach 21–25% in 2030 and 26–35% in 2050. The average annual growth rate (for 30 years) of the installed capacity of nuclear power plants in Russia in the sustainable development scenario is 3.1% compared to 2.7% for the world as a whole. In the GEM and GEM-Dyn calculations performed by the authors, the scale of nuclear energy use turned out to be about 30% higher than in the scenarios of the International Energy Agency due to more conservative estimates of the opportunities for improving the performance of renewable energy sources and taking into account the need to back-up their capacity.","PeriodicalId":37826,"journal":{"name":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Development Options of Nuclear Power Under Carbon Dioxide Emissions Constrains\",\"authors\":\"O. Marchenko, S. Solomin\",\"doi\":\"10.26583/npe.2022.2.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of the work is forecasting the development of nuclear power in Russia and the world for the period up to 2050 under various scenarios of constraints on carbon dioxide emissions. A brief comparative analysis of the main characteristics of the forecasts of the International Energy Agency (IEA) and the International Renewable Energy Agency (IRENA) has been carried out. Additionally, calculations were performed using the mathematical models of the world energy system GEM and GEM-Dyn developed at the ISEM SB RAS. The optimal ratio of nuclear and non-nuclear energy sources has been determined. It is shown that nuclear power, including nuclear power plants operating on a closed fuel cycle, along with renewable energy sources, is an effective technology that can solve the problem of reducing carbon dioxide emissions. Calculations have shown that in the sustainable development scenario, the capacity of nuclear power plants in Russia in the period from 2020 to 2050 can increase by 2.7 times, and their share in electricity generation can reach 21–25% in 2030 and 26–35% in 2050. The average annual growth rate (for 30 years) of the installed capacity of nuclear power plants in Russia in the sustainable development scenario is 3.1% compared to 2.7% for the world as a whole. In the GEM and GEM-Dyn calculations performed by the authors, the scale of nuclear energy use turned out to be about 30% higher than in the scenarios of the International Energy Agency due to more conservative estimates of the opportunities for improving the performance of renewable energy sources and taking into account the need to back-up their capacity.\",\"PeriodicalId\":37826,\"journal\":{\"name\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26583/npe.2022.2.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26583/npe.2022.2.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

摘要

这项工作的目的是在各种限制二氧化碳排放的情况下,预测到2050年俄罗斯和世界核电的发展。对国际能源署(IEA)和国际可再生能源署(IRENA)预测的主要特点进行了简要的比较分析。此外,使用ISEM SB RAS开发的世界能源系统GEM和GEM- dyn数学模型进行计算。确定了核能和非核能的最佳比例。这表明,核电,包括在封闭燃料循环上运行的核电站,与可再生能源一起,是一种有效的技术,可以解决减少二氧化碳排放的问题。计算表明,在可持续发展情景下,2020 - 2050年俄罗斯核电站装机容量可增长2.7倍,2030年占发电比重可达21-25%,2050年占发电比重可达26-35%。在可持续发展情景下,俄罗斯核电站装机容量的平均年增长率(30年)为3.1%,而世界总体增长率为2.7%。在作者进行的GEM和GEM- dyn计算中,由于对改善可再生能源性能的机会进行了更为保守的估计,并考虑到备份其容量的需要,核能的使用规模比国际能源署的情景高出约30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Development Options of Nuclear Power Under Carbon Dioxide Emissions Constrains
The aim of the work is forecasting the development of nuclear power in Russia and the world for the period up to 2050 under various scenarios of constraints on carbon dioxide emissions. A brief comparative analysis of the main characteristics of the forecasts of the International Energy Agency (IEA) and the International Renewable Energy Agency (IRENA) has been carried out. Additionally, calculations were performed using the mathematical models of the world energy system GEM and GEM-Dyn developed at the ISEM SB RAS. The optimal ratio of nuclear and non-nuclear energy sources has been determined. It is shown that nuclear power, including nuclear power plants operating on a closed fuel cycle, along with renewable energy sources, is an effective technology that can solve the problem of reducing carbon dioxide emissions. Calculations have shown that in the sustainable development scenario, the capacity of nuclear power plants in Russia in the period from 2020 to 2050 can increase by 2.7 times, and their share in electricity generation can reach 21–25% in 2030 and 26–35% in 2050. The average annual growth rate (for 30 years) of the installed capacity of nuclear power plants in Russia in the sustainable development scenario is 3.1% compared to 2.7% for the world as a whole. In the GEM and GEM-Dyn calculations performed by the authors, the scale of nuclear energy use turned out to be about 30% higher than in the scenarios of the International Energy Agency due to more conservative estimates of the opportunities for improving the performance of renewable energy sources and taking into account the need to back-up their capacity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika
Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika Energy-Nuclear Energy and Engineering
CiteScore
0.40
自引率
0.00%
发文量
30
期刊介绍: The scientific journal Izvestiya Wysshikh Uchebnykh Zawedeniy, Yadernaya Energetika is included in the Scopus database. Publisher country is RU. The main subject areas of published articles are Nuclear Energy and Engineering, Физика, Приборостроение, метрология и информационно-измерительные приборы и системы, Информатика, вычислительная техника и управление, Энергетика. Before sending a scientific article, we recommend you to read the section For authors. This will allow you to prepare an article better for publication, to make it more interesting for the readers and useful for the scientific community. By following these steps, you will greatly increase the likelihood of your scientific article publishing in journals included in international citation systems (e.g., Scopus). Then you may choose a different journal, select the journal included to list of SAC Russia journal list, or send your scientific work for review and publication.
期刊最新文献
Studies of the BN-350 Reactor Fuel, Structural and Absorbing Materials at the Hot Laboratory of the IPPE Study into the dependence of the Co-60 and Lu-177g efficiency production on the energy structure of neutron flux density On Dilation of the BN-350 Reactor Fuel Assemblies Reprocessing of Primary and Secondary Coolants During the BN-350 Reactor Decommissioning Principles of Construction and Development of an Automatic Protection System for Steam Generators of Fast Reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1