加载频率对建筑材料疲劳的影响

IF 0.3 Q4 ENGINEERING, MULTIDISCIPLINARY Science & Technique Pub Date : 2019-10-14 DOI:10.21122/2227-1031-2019-18-5-427-435
V. V. Mylnikov
{"title":"加载频率对建筑材料疲劳的影响","authors":"V. V. Mylnikov","doi":"10.21122/2227-1031-2019-18-5-427-435","DOIUrl":null,"url":null,"abstract":"Investigations have been carried out in respect of structural steel and titanium alloy fatigue at various cyclic loading frequencies and these investigations have made it possible to reveal regularities in changes of parameters pertaining to fatigue resistance and stability behaviour of the tested materials. A change in cyclic loading frequency affects duration of a single (during one cycle) stay of the material in the loaded state and it has an impact on its durability. In addition, with an increase in frequency of load cycles, deformation rate becomes higher, and stress build-up time is decreasing, while distortion of a crystal lattice is increasing due to reduction of time for development of a weakening process. This process is accompanied by an increase in intensity of grain crushing into fragments and blocks, and their disorientation. Tests on cyclic strength of the studied material samples have been carried out at various frequencies and at a room temperature according to the following loading schemes: cantilever cyclic transverse bending of a flat sample; cantilever bending with rotation of a cylindrical sample; axial tension on a pulsating cycle. Quantitative estimates of a fatigue resistance index in the form of slope tangent in a left branch of the fatigue curve to a cycle axis have been used in order to analyze and evaluate performance and stability of the tested materials. Methods for mathematical statistics have been applied to process the obtained results. Graphic dependences of fatigue curves have been plotted in logarithmic coordinates that allowed to obtain straightening of approximating lines for experimental data. The investigations have revealed that loading frequency has an ambiguous effect on fatigue resistance due to some differences in materials in respect of their reaction to changes in a load spectrum within different areas of the fatigue process, but at the same time it has been found that an increase in fatigue strength leads to a slope decrease in the fatigue curve regardless of a decrease or an increase in a load frequency. The paper proposes a new approach to assess a cyclic strength and durability of materials, and it comprises a system of parameters including a relative coefficient of limited endurance, a correlation coefficient and a slope tangent of the fatigue curve. Behavior dynamics for real machine parts and structures made of these alloys under operating conditions has been indicated in the paper.","PeriodicalId":42375,"journal":{"name":"Science & Technique","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Influence of Loading Frequency on Fatigue of Construction Materials\",\"authors\":\"V. V. Mylnikov\",\"doi\":\"10.21122/2227-1031-2019-18-5-427-435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigations have been carried out in respect of structural steel and titanium alloy fatigue at various cyclic loading frequencies and these investigations have made it possible to reveal regularities in changes of parameters pertaining to fatigue resistance and stability behaviour of the tested materials. A change in cyclic loading frequency affects duration of a single (during one cycle) stay of the material in the loaded state and it has an impact on its durability. In addition, with an increase in frequency of load cycles, deformation rate becomes higher, and stress build-up time is decreasing, while distortion of a crystal lattice is increasing due to reduction of time for development of a weakening process. This process is accompanied by an increase in intensity of grain crushing into fragments and blocks, and their disorientation. Tests on cyclic strength of the studied material samples have been carried out at various frequencies and at a room temperature according to the following loading schemes: cantilever cyclic transverse bending of a flat sample; cantilever bending with rotation of a cylindrical sample; axial tension on a pulsating cycle. Quantitative estimates of a fatigue resistance index in the form of slope tangent in a left branch of the fatigue curve to a cycle axis have been used in order to analyze and evaluate performance and stability of the tested materials. Methods for mathematical statistics have been applied to process the obtained results. Graphic dependences of fatigue curves have been plotted in logarithmic coordinates that allowed to obtain straightening of approximating lines for experimental data. The investigations have revealed that loading frequency has an ambiguous effect on fatigue resistance due to some differences in materials in respect of their reaction to changes in a load spectrum within different areas of the fatigue process, but at the same time it has been found that an increase in fatigue strength leads to a slope decrease in the fatigue curve regardless of a decrease or an increase in a load frequency. The paper proposes a new approach to assess a cyclic strength and durability of materials, and it comprises a system of parameters including a relative coefficient of limited endurance, a correlation coefficient and a slope tangent of the fatigue curve. Behavior dynamics for real machine parts and structures made of these alloys under operating conditions has been indicated in the paper.\",\"PeriodicalId\":42375,\"journal\":{\"name\":\"Science & Technique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science & Technique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21122/2227-1031-2019-18-5-427-435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Technique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/2227-1031-2019-18-5-427-435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在不同的循环加载频率下,对结构钢和钛合金的疲劳进行了研究,这些研究使得揭示与被试材料的疲劳抗力和稳定性行为有关的参数变化的规律成为可能。循环加载频率的变化会影响材料在加载状态下的单次停留时间,并对其耐久性产生影响。此外,随着载荷循环频率的增加,变形率变得更高,应力积累时间减少,而由于弱化过程的发展时间减少,晶格的畸变增加。这个过程伴随着颗粒破碎成碎片和块状的强度增加,以及它们的迷失方向。根据以下加载方案,在不同频率和室温下对所研究的材料样品进行了循环强度试验:平面样品的悬臂梁循环横向弯曲;悬臂弯曲与圆柱形样品的旋转;脉动周期上的轴向张力。为了分析和评价被试材料的性能和稳定性,采用了疲劳曲线左分支与循环轴的斜率切线形式的疲劳抗力指数的定量估计。应用数理统计方法对所得结果进行了处理。在对数坐标中绘制了疲劳曲线的图形依赖关系,以便为实验数据获得近似直线的矫直。研究表明,由于材料对疲劳过程中不同区域载荷谱变化的反应不同,载荷频率对疲劳抗力的影响不明确,但同时发现,无论载荷频率降低或增加,疲劳强度的增加都会导致疲劳曲线的斜率下降。本文提出了一种评估材料循环强度和耐久性的新方法,该方法包括极限耐久性相对系数、相关系数和疲劳曲线的斜率切线等参数系统。本文给出了由这些合金制成的实际机械零件和结构在工作条件下的行为动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Loading Frequency on Fatigue of Construction Materials
Investigations have been carried out in respect of structural steel and titanium alloy fatigue at various cyclic loading frequencies and these investigations have made it possible to reveal regularities in changes of parameters pertaining to fatigue resistance and stability behaviour of the tested materials. A change in cyclic loading frequency affects duration of a single (during one cycle) stay of the material in the loaded state and it has an impact on its durability. In addition, with an increase in frequency of load cycles, deformation rate becomes higher, and stress build-up time is decreasing, while distortion of a crystal lattice is increasing due to reduction of time for development of a weakening process. This process is accompanied by an increase in intensity of grain crushing into fragments and blocks, and their disorientation. Tests on cyclic strength of the studied material samples have been carried out at various frequencies and at a room temperature according to the following loading schemes: cantilever cyclic transverse bending of a flat sample; cantilever bending with rotation of a cylindrical sample; axial tension on a pulsating cycle. Quantitative estimates of a fatigue resistance index in the form of slope tangent in a left branch of the fatigue curve to a cycle axis have been used in order to analyze and evaluate performance and stability of the tested materials. Methods for mathematical statistics have been applied to process the obtained results. Graphic dependences of fatigue curves have been plotted in logarithmic coordinates that allowed to obtain straightening of approximating lines for experimental data. The investigations have revealed that loading frequency has an ambiguous effect on fatigue resistance due to some differences in materials in respect of their reaction to changes in a load spectrum within different areas of the fatigue process, but at the same time it has been found that an increase in fatigue strength leads to a slope decrease in the fatigue curve regardless of a decrease or an increase in a load frequency. The paper proposes a new approach to assess a cyclic strength and durability of materials, and it comprises a system of parameters including a relative coefficient of limited endurance, a correlation coefficient and a slope tangent of the fatigue curve. Behavior dynamics for real machine parts and structures made of these alloys under operating conditions has been indicated in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science & Technique
Science & Technique ENGINEERING, MULTIDISCIPLINARY-
自引率
50.00%
发文量
47
审稿时长
8 weeks
期刊最新文献
Particularities of Exergy Analysis in Air Conditioning Systems Structure and Organization of Regional Renewable Energy Cluster in Vietnam About Braking of Wheeled Vehicle Equipped with Automated Brake Control System Proposals for Rehabilitation of Operated Combined Insulated Rolled Roofs Formation of Logistics Approach to Economic Development of Road Sector of the Republic of Belarus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1