木薯粉的识别模型基于基于数码图像的Mocaf淀粉的颜色

Sri Andayani, Ega Noviastuti
{"title":"木薯粉的识别模型基于基于数码图像的Mocaf淀粉的颜色","authors":"Sri Andayani, Ega Noviastuti","doi":"10.21831/pythagoras.v17i1.34994","DOIUrl":null,"url":null,"abstract":"Penelitian ini bertujuan menghasilkan model untuk mengidentifikasi mutu singkong berdasarkan warna sebagai bahan pembuatan tepung mocaf dengan berbasis citra digital.  Metode yang digunakan meliputi beberapa tahap pengolahan citra digital antara lain preprocessing dan ekstraksi ciri. Preprocessing meliputi cropping, resizing, dan grayscaling, sedangkan ekstraksi ciri meliputi segmentasi threshold dan binerisasi. Data penelitian menggunakan 118 citra singkong yang dibagi menjadi 72 citra data latih dan 46 data uji. Hasil penelitian berupa model identifikasi yang mendasarkan pada dua hal berikut: a) menggunakan ekstraksi ciri yang meliputi segmentasi threshold dengan nilai ambang 170 dan binerisasi dengan nilai ambang 75; dan b) penentuan mutu singkong dilakukan berdasarkan perbandingan luas piksel putih hasil segmentasi threshold dengan luas piksel putih hasil binerisasi. Singkong dikatakan bermutu baik jika citranya yang memiliki persentase luas piksel warna putih lebih besar atau sama dengan 65%. Model yang dihasilkan memberikan akurasi sebesar 94% terhadap 72 data latih dan sebesar 95% terhadap 46 data uji. Cassava Identification Model Based on Color for Mocaf Flour Using Digital ImageAbstractThis study aims to produce a model to identify the quality of cassava-based on color as an ingredient for making mocaf flour based on digital images. The procedure includes preprocessing and feature extraction among other steps of digital image processing. Preprocessing includes cropping, resizing, and grayscaling, while feature extraction includes threshold segmentation and binaryization. The data are 188 cassava images consisting of 72 training data images and 46 test data. The result of the study is an identification model based on the following two things: a) utilizing feature extraction that uses threshold segmentation with a threshold value of 170 and binaryization with a threshold value of 75; and b) determining of the quality of cassava is carried out based on the ratio of the area of white pixels produced by threshold segmentation to the area of white pixels produced by binaryization. If 65% or more of the pixels in the image are white, the cassava has a good quality. The resulting model provides an accuracy of 94% for 72 training data and 95% for 46 test data.","PeriodicalId":31653,"journal":{"name":"Pythagoras Jurnal pendidikan Matematika","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Identifikasi Singkong Berdasarkan Warna untuk Tepung Mocaf Berbasis Citra Digital\",\"authors\":\"Sri Andayani, Ega Noviastuti\",\"doi\":\"10.21831/pythagoras.v17i1.34994\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Penelitian ini bertujuan menghasilkan model untuk mengidentifikasi mutu singkong berdasarkan warna sebagai bahan pembuatan tepung mocaf dengan berbasis citra digital.  Metode yang digunakan meliputi beberapa tahap pengolahan citra digital antara lain preprocessing dan ekstraksi ciri. Preprocessing meliputi cropping, resizing, dan grayscaling, sedangkan ekstraksi ciri meliputi segmentasi threshold dan binerisasi. Data penelitian menggunakan 118 citra singkong yang dibagi menjadi 72 citra data latih dan 46 data uji. Hasil penelitian berupa model identifikasi yang mendasarkan pada dua hal berikut: a) menggunakan ekstraksi ciri yang meliputi segmentasi threshold dengan nilai ambang 170 dan binerisasi dengan nilai ambang 75; dan b) penentuan mutu singkong dilakukan berdasarkan perbandingan luas piksel putih hasil segmentasi threshold dengan luas piksel putih hasil binerisasi. Singkong dikatakan bermutu baik jika citranya yang memiliki persentase luas piksel warna putih lebih besar atau sama dengan 65%. Model yang dihasilkan memberikan akurasi sebesar 94% terhadap 72 data latih dan sebesar 95% terhadap 46 data uji. Cassava Identification Model Based on Color for Mocaf Flour Using Digital ImageAbstractThis study aims to produce a model to identify the quality of cassava-based on color as an ingredient for making mocaf flour based on digital images. The procedure includes preprocessing and feature extraction among other steps of digital image processing. Preprocessing includes cropping, resizing, and grayscaling, while feature extraction includes threshold segmentation and binaryization. The data are 188 cassava images consisting of 72 training data images and 46 test data. The result of the study is an identification model based on the following two things: a) utilizing feature extraction that uses threshold segmentation with a threshold value of 170 and binaryization with a threshold value of 75; and b) determining of the quality of cassava is carried out based on the ratio of the area of white pixels produced by threshold segmentation to the area of white pixels produced by binaryization. If 65% or more of the pixels in the image are white, the cassava has a good quality. The resulting model provides an accuracy of 94% for 72 training data and 95% for 46 test data.\",\"PeriodicalId\":31653,\"journal\":{\"name\":\"Pythagoras Jurnal pendidikan Matematika\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pythagoras Jurnal pendidikan Matematika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21831/pythagoras.v17i1.34994\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pythagoras Jurnal pendidikan Matematika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21831/pythagoras.v17i1.34994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项研究的目的是建立一个模型,以颜色为基础,以数字图像为基础,确定木薯的质量。使用的方法包括几个阶段的数字图像处理,包括增强和提取特征。预处理包括切割、残留物和灰度,而提取特征包括细分threshold和二叠加。研究数据使用118个木薯图像除以72个培训数据图像和46个测试数据。研究结果是基于以下两方面的识别模型:a)采用提取特征,包括107分的threshold和75分的二元性;和b)确定木薯的质量是根据分割threshold的白色像素面积与二进制的白色像素面积进行比较。如果木薯的可比性大于65%,而木薯被认为是好的。结果模型为72项培训数据提供了94%的准确率,为46项测试数据提供了95%的准确率。Cassava标识模型基于数字imaimagestractthis study of study to product a Model来标识基于数字images上的Mocaf Flour质量。程序包括对产品的过度需求和对数字图像的其他步骤的提取。污染包括crocludes, resition,和灰度,而激情的提取包括股份分割和二进制。数据是188 - cassava images,是72个培训数据images和46个测试数据。研究的结果是基于两件事的模型:a)实用的情感体验b)卡萨瓦的质量的确定是基于白色像素地区的耕作,由白色像素区分割而成。如果图像中65%或更多的像素是白色的,cassava有很好的质量。计算结果为72个数据训练的94%,95%的数据测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Identifikasi Singkong Berdasarkan Warna untuk Tepung Mocaf Berbasis Citra Digital
Penelitian ini bertujuan menghasilkan model untuk mengidentifikasi mutu singkong berdasarkan warna sebagai bahan pembuatan tepung mocaf dengan berbasis citra digital.  Metode yang digunakan meliputi beberapa tahap pengolahan citra digital antara lain preprocessing dan ekstraksi ciri. Preprocessing meliputi cropping, resizing, dan grayscaling, sedangkan ekstraksi ciri meliputi segmentasi threshold dan binerisasi. Data penelitian menggunakan 118 citra singkong yang dibagi menjadi 72 citra data latih dan 46 data uji. Hasil penelitian berupa model identifikasi yang mendasarkan pada dua hal berikut: a) menggunakan ekstraksi ciri yang meliputi segmentasi threshold dengan nilai ambang 170 dan binerisasi dengan nilai ambang 75; dan b) penentuan mutu singkong dilakukan berdasarkan perbandingan luas piksel putih hasil segmentasi threshold dengan luas piksel putih hasil binerisasi. Singkong dikatakan bermutu baik jika citranya yang memiliki persentase luas piksel warna putih lebih besar atau sama dengan 65%. Model yang dihasilkan memberikan akurasi sebesar 94% terhadap 72 data latih dan sebesar 95% terhadap 46 data uji. Cassava Identification Model Based on Color for Mocaf Flour Using Digital ImageAbstractThis study aims to produce a model to identify the quality of cassava-based on color as an ingredient for making mocaf flour based on digital images. The procedure includes preprocessing and feature extraction among other steps of digital image processing. Preprocessing includes cropping, resizing, and grayscaling, while feature extraction includes threshold segmentation and binaryization. The data are 188 cassava images consisting of 72 training data images and 46 test data. The result of the study is an identification model based on the following two things: a) utilizing feature extraction that uses threshold segmentation with a threshold value of 170 and binaryization with a threshold value of 75; and b) determining of the quality of cassava is carried out based on the ratio of the area of white pixels produced by threshold segmentation to the area of white pixels produced by binaryization. If 65% or more of the pixels in the image are white, the cassava has a good quality. The resulting model provides an accuracy of 94% for 72 training data and 95% for 46 test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Analisis pemahaman konsep matematis berdasarkan minat belajar siswa Pengembangan LKPD berbasis inkuiri pada materi aritmatika sosial untuk peserta didik Kelas VII Pengembangan komik digital sebagai media literasi numerasi Aspek etnomatematika pada anyaman bambu Desa Bunga Tanjung Kabupaten Kerinci Students’ perceptions on learning, motivation, and performance through project-based learning: undergraduate students’ case
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1