{"title":"用水泥替代高碱混凝土的长期碱-硅缓释","authors":"D. Hooton, B. Fournier","doi":"10.1680/jcoma.21.00049","DOIUrl":null,"url":null,"abstract":"The impact of high-alkali Portland cements on the prescribed level of supplementary cementitious materials required in the Canadian standard for akali-silica reaction mitigation was evaluated. Based on the results, for concretes containing aggregates exhibiting moderate reactivity, the maximum allowable cement alkali limit was raised from 1.00% to 1.15%. For all levels of aggregate reactivity, cement alkali contents could be allowed up to 1.25% provided the recommended level of mitigation by supplementary cementitious materials was increased. In the initial laboratory study, mortar bars and concrete prisms were cast and monitored using two different reactive aggregates and recommended levels of fly ash and slag. For the concrete prism tests, the alkali contents of the cements were increased to 1.25%, as per the standard, or were increased by 0.25%. Instrumented outdoor exposure concrete blocks, along with additional concrete prisms stored at different temperatures, were cast from numerous mixtures made with cement alkali equivalents ranging up to 1.22%. This paper report on the long-term performance of the prisms and concrete blocks after 12 and 27 years. The performance of the outdoor blocks is also compared to predicted performance based on the accelerated mortar bar and concrete prism test results.","PeriodicalId":51787,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Construction Materials","volume":"69 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term alkali-silica mitigation of high-alkali concrete with cement replacements\",\"authors\":\"D. Hooton, B. Fournier\",\"doi\":\"10.1680/jcoma.21.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impact of high-alkali Portland cements on the prescribed level of supplementary cementitious materials required in the Canadian standard for akali-silica reaction mitigation was evaluated. Based on the results, for concretes containing aggregates exhibiting moderate reactivity, the maximum allowable cement alkali limit was raised from 1.00% to 1.15%. For all levels of aggregate reactivity, cement alkali contents could be allowed up to 1.25% provided the recommended level of mitigation by supplementary cementitious materials was increased. In the initial laboratory study, mortar bars and concrete prisms were cast and monitored using two different reactive aggregates and recommended levels of fly ash and slag. For the concrete prism tests, the alkali contents of the cements were increased to 1.25%, as per the standard, or were increased by 0.25%. Instrumented outdoor exposure concrete blocks, along with additional concrete prisms stored at different temperatures, were cast from numerous mixtures made with cement alkali equivalents ranging up to 1.22%. This paper report on the long-term performance of the prisms and concrete blocks after 12 and 27 years. The performance of the outdoor blocks is also compared to predicted performance based on the accelerated mortar bar and concrete prism test results.\",\"PeriodicalId\":51787,\"journal\":{\"name\":\"Proceedings of the Institution of Civil Engineers-Construction Materials\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Civil Engineers-Construction Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1680/jcoma.21.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Construction Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1680/jcoma.21.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Long-term alkali-silica mitigation of high-alkali concrete with cement replacements
The impact of high-alkali Portland cements on the prescribed level of supplementary cementitious materials required in the Canadian standard for akali-silica reaction mitigation was evaluated. Based on the results, for concretes containing aggregates exhibiting moderate reactivity, the maximum allowable cement alkali limit was raised from 1.00% to 1.15%. For all levels of aggregate reactivity, cement alkali contents could be allowed up to 1.25% provided the recommended level of mitigation by supplementary cementitious materials was increased. In the initial laboratory study, mortar bars and concrete prisms were cast and monitored using two different reactive aggregates and recommended levels of fly ash and slag. For the concrete prism tests, the alkali contents of the cements were increased to 1.25%, as per the standard, or were increased by 0.25%. Instrumented outdoor exposure concrete blocks, along with additional concrete prisms stored at different temperatures, were cast from numerous mixtures made with cement alkali equivalents ranging up to 1.22%. This paper report on the long-term performance of the prisms and concrete blocks after 12 and 27 years. The performance of the outdoor blocks is also compared to predicted performance based on the accelerated mortar bar and concrete prism test results.