Heramb Nemlekar, N. Dhanaraj, Angelos Guan, S. Gupta, S. Nikolaidis
{"title":"主动机器人协助装配任务中人类偏好的迁移学习","authors":"Heramb Nemlekar, N. Dhanaraj, Angelos Guan, S. Gupta, S. Nikolaidis","doi":"10.1145/3568162.3576965","DOIUrl":null,"url":null,"abstract":"We focus on enabling robots to proactively assist humans in assembly tasks by adapting to their preferred sequence of actions. Much work on robot adaptation requires human demonstrations of the task. However, human demonstrations of real-world assemblies can be tedious and time-consuming. Thus, we propose learning human preferences from demonstrations in a shorter, canonical task to predict user actions in the actual assembly task. The proposed system uses the preference model learned from the canonical task as a prior and updates the model through interaction when predictions are inaccurate. We evaluate the proposed system in simulated assembly tasks and in a real-world human-robot assembly study and we show that both transferring the preference model from the canonical task, as well as updating the model online, contribute to improved accuracy in human action prediction. This enables the robot to proactively assist users, significantly reduce their idle time, and improve their experience working with the robot, compared to a reactive robot.","PeriodicalId":36515,"journal":{"name":"ACM Transactions on Human-Robot Interaction","volume":"96 2 Pt 1 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning of Human Preferences for Proactive Robot Assistance in Assembly Tasks\",\"authors\":\"Heramb Nemlekar, N. Dhanaraj, Angelos Guan, S. Gupta, S. Nikolaidis\",\"doi\":\"10.1145/3568162.3576965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We focus on enabling robots to proactively assist humans in assembly tasks by adapting to their preferred sequence of actions. Much work on robot adaptation requires human demonstrations of the task. However, human demonstrations of real-world assemblies can be tedious and time-consuming. Thus, we propose learning human preferences from demonstrations in a shorter, canonical task to predict user actions in the actual assembly task. The proposed system uses the preference model learned from the canonical task as a prior and updates the model through interaction when predictions are inaccurate. We evaluate the proposed system in simulated assembly tasks and in a real-world human-robot assembly study and we show that both transferring the preference model from the canonical task, as well as updating the model online, contribute to improved accuracy in human action prediction. This enables the robot to proactively assist users, significantly reduce their idle time, and improve their experience working with the robot, compared to a reactive robot.\",\"PeriodicalId\":36515,\"journal\":{\"name\":\"ACM Transactions on Human-Robot Interaction\",\"volume\":\"96 2 Pt 1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Human-Robot Interaction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3568162.3576965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Human-Robot Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3568162.3576965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Transfer Learning of Human Preferences for Proactive Robot Assistance in Assembly Tasks
We focus on enabling robots to proactively assist humans in assembly tasks by adapting to their preferred sequence of actions. Much work on robot adaptation requires human demonstrations of the task. However, human demonstrations of real-world assemblies can be tedious and time-consuming. Thus, we propose learning human preferences from demonstrations in a shorter, canonical task to predict user actions in the actual assembly task. The proposed system uses the preference model learned from the canonical task as a prior and updates the model through interaction when predictions are inaccurate. We evaluate the proposed system in simulated assembly tasks and in a real-world human-robot assembly study and we show that both transferring the preference model from the canonical task, as well as updating the model online, contribute to improved accuracy in human action prediction. This enables the robot to proactively assist users, significantly reduce their idle time, and improve their experience working with the robot, compared to a reactive robot.
期刊介绍:
ACM Transactions on Human-Robot Interaction (THRI) is a prestigious Gold Open Access journal that aspires to lead the field of human-robot interaction as a top-tier, peer-reviewed, interdisciplinary publication. The journal prioritizes articles that significantly contribute to the current state of the art, enhance overall knowledge, have a broad appeal, and are accessible to a diverse audience. Submissions are expected to meet a high scholarly standard, and authors are encouraged to ensure their research is well-presented, advancing the understanding of human-robot interaction, adding cutting-edge or general insights to the field, or challenging current perspectives in this research domain.
THRI warmly invites well-crafted paper submissions from a variety of disciplines, encompassing robotics, computer science, engineering, design, and the behavioral and social sciences. The scholarly articles published in THRI may cover a range of topics such as the nature of human interactions with robots and robotic technologies, methods to enhance or enable novel forms of interaction, and the societal or organizational impacts of these interactions. The editorial team is also keen on receiving proposals for special issues that focus on specific technical challenges or that apply human-robot interaction research to further areas like social computing, consumer behavior, health, and education.