带boosting的零膨胀泊松回归处理保险数据不平衡问题

IF 1.7 3区 经济学 Q2 ECONOMICS ASTIN Bulletin Pub Date : 2020-12-17 DOI:10.1017/asb.2020.40
Simon C. K. Lee
{"title":"带boosting的零膨胀泊松回归处理保险数据不平衡问题","authors":"Simon C. K. Lee","doi":"10.1017/asb.2020.40","DOIUrl":null,"url":null,"abstract":"Abstract A machine learning approach to zero-inflated Poisson (ZIP) regression is introduced to address common difficulty arising from imbalanced financial data. The suggested ZIP can be interpreted as an adaptive weight adjustment procedure that removes the need for post-modeling re-calibration and results in a substantial enhancement of predictive accuracy. Notwithstanding the increased complexity due to the expanded parameter set, we utilize a cyclic coordinate descent optimization to implement the ZIP regression, with adjustments made to address saddle points. We also study how various approaches alleviate the potential drawbacks of incomplete exposures in insurance applications. The procedure is tested on real-life data. We demonstrate a significant improvement in performance relative to other popular alternatives, which justifies our modeling techniques.","PeriodicalId":8617,"journal":{"name":"ASTIN Bulletin","volume":"71 1","pages":"27 - 55"},"PeriodicalIF":1.7000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"ADDRESSING IMBALANCED INSURANCE DATA THROUGH ZERO-INFLATED POISSON REGRESSION WITH BOOSTING\",\"authors\":\"Simon C. K. Lee\",\"doi\":\"10.1017/asb.2020.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A machine learning approach to zero-inflated Poisson (ZIP) regression is introduced to address common difficulty arising from imbalanced financial data. The suggested ZIP can be interpreted as an adaptive weight adjustment procedure that removes the need for post-modeling re-calibration and results in a substantial enhancement of predictive accuracy. Notwithstanding the increased complexity due to the expanded parameter set, we utilize a cyclic coordinate descent optimization to implement the ZIP regression, with adjustments made to address saddle points. We also study how various approaches alleviate the potential drawbacks of incomplete exposures in insurance applications. The procedure is tested on real-life data. We demonstrate a significant improvement in performance relative to other popular alternatives, which justifies our modeling techniques.\",\"PeriodicalId\":8617,\"journal\":{\"name\":\"ASTIN Bulletin\",\"volume\":\"71 1\",\"pages\":\"27 - 55\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTIN Bulletin\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1017/asb.2020.40\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTIN Bulletin","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/asb.2020.40","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 18

摘要

摘要:介绍了一种零膨胀泊松(ZIP)回归的机器学习方法,以解决金融数据不平衡带来的常见困难。建议的ZIP可以解释为一个自适应的重量调整程序,消除了建模后重新校准的需要,并导致预测精度的大幅提高。尽管由于参数集的扩展而增加了复杂性,但我们利用循环坐标下降优化来实现ZIP回归,并对鞍点进行了调整。我们还研究了各种方法如何减轻保险应用中不完全暴露的潜在缺点。该程序在真实数据上进行了测试。我们展示了相对于其他流行的替代方案在性能上的显著改进,这证明了我们的建模技术是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADDRESSING IMBALANCED INSURANCE DATA THROUGH ZERO-INFLATED POISSON REGRESSION WITH BOOSTING
Abstract A machine learning approach to zero-inflated Poisson (ZIP) regression is introduced to address common difficulty arising from imbalanced financial data. The suggested ZIP can be interpreted as an adaptive weight adjustment procedure that removes the need for post-modeling re-calibration and results in a substantial enhancement of predictive accuracy. Notwithstanding the increased complexity due to the expanded parameter set, we utilize a cyclic coordinate descent optimization to implement the ZIP regression, with adjustments made to address saddle points. We also study how various approaches alleviate the potential drawbacks of incomplete exposures in insurance applications. The procedure is tested on real-life data. We demonstrate a significant improvement in performance relative to other popular alternatives, which justifies our modeling techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ASTIN Bulletin
ASTIN Bulletin 数学-数学跨学科应用
CiteScore
3.20
自引率
5.30%
发文量
24
审稿时长
>12 weeks
期刊介绍: ASTIN Bulletin publishes papers that are relevant to any branch of actuarial science and insurance mathematics. Its papers are quantitative and scientific in nature, and draw on theory and methods developed in any branch of the mathematical sciences including actuarial mathematics, statistics, probability, financial mathematics and econometrics.
期刊最新文献
Construction of rating systems using global sensitivity analysis: A numerical investigation Optimal VIX-linked structure for the target benefit pension plan Risk sharing in equity-linked insurance products: Stackelberg equilibrium between an insurer and a reinsurer Target benefit versus defined contribution scheme: a multi-period framework ASB volume 53 issue 3 Cover and Front matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1