V. Lompik, N. Dadakin, M. Nukhaev, K. Rymarenko, Artem Makatrov, Ildus Zaynullin, D. Bikmeev
{"title":"化学试剂在多孔介质中的吸附量测定的强化浓度法","authors":"V. Lompik, N. Dadakin, M. Nukhaev, K. Rymarenko, Artem Makatrov, Ildus Zaynullin, D. Bikmeev","doi":"10.2118/196771-ms","DOIUrl":null,"url":null,"abstract":"\n Before implementing any chemical enhanced oil recovery project at the field, it is very important to carry out a feasibility study, which is impossible without determining their effectiveness under laboratory conditions.\n The task of laboratory research is to determine all the parameters of surfactant and polymer solutions, necessary for further analytical evaluation and reservoir simulation. It is necessary to conduct laboratory experiments to perform technical and economic assessment of the chemical EORs implementation. One of the most important issues here is to determine the amount of reagent held in the pore space of the reservoir.\n The retention parameter determines how much reagent needs to be injected to achieve the required displacement efficiency. It directly affects reagent consumption and economic efficiency.\n This paper discusses various methods for determining the amount of reagent retained in the reservoir; it can be surfactant species or a polymer. To solve the problem of reducing the time for the experimental part, an algorithm of an experiment was developed, which makes it possible to determine the retention parameters in a shorter time and with less labor. This method was tested and showed its effectiveness in the course of a technical and economic study on the possibility of implementing polymer flooding for a field in Eastern Siberia.\n As a result of the experiments, the relationships between the surfactant or polymer retention and their concentration, and also between permeability and the amount of reagent adsorbed were found. The effect of salinity on the retention parameter was determined, the fact of desorption for both surfactants and polymers was revealed. Inaccessible pore volume for polymer was determined.","PeriodicalId":10977,"journal":{"name":"Day 2 Wed, October 23, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Step-Up Concentration Method for Chemical Agents’ Adsorption Measurement in Porous Media\",\"authors\":\"V. Lompik, N. Dadakin, M. Nukhaev, K. Rymarenko, Artem Makatrov, Ildus Zaynullin, D. Bikmeev\",\"doi\":\"10.2118/196771-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Before implementing any chemical enhanced oil recovery project at the field, it is very important to carry out a feasibility study, which is impossible without determining their effectiveness under laboratory conditions.\\n The task of laboratory research is to determine all the parameters of surfactant and polymer solutions, necessary for further analytical evaluation and reservoir simulation. It is necessary to conduct laboratory experiments to perform technical and economic assessment of the chemical EORs implementation. One of the most important issues here is to determine the amount of reagent held in the pore space of the reservoir.\\n The retention parameter determines how much reagent needs to be injected to achieve the required displacement efficiency. It directly affects reagent consumption and economic efficiency.\\n This paper discusses various methods for determining the amount of reagent retained in the reservoir; it can be surfactant species or a polymer. To solve the problem of reducing the time for the experimental part, an algorithm of an experiment was developed, which makes it possible to determine the retention parameters in a shorter time and with less labor. This method was tested and showed its effectiveness in the course of a technical and economic study on the possibility of implementing polymer flooding for a field in Eastern Siberia.\\n As a result of the experiments, the relationships between the surfactant or polymer retention and their concentration, and also between permeability and the amount of reagent adsorbed were found. The effect of salinity on the retention parameter was determined, the fact of desorption for both surfactants and polymers was revealed. Inaccessible pore volume for polymer was determined.\",\"PeriodicalId\":10977,\"journal\":{\"name\":\"Day 2 Wed, October 23, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, October 23, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/196771-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, October 23, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/196771-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Step-Up Concentration Method for Chemical Agents’ Adsorption Measurement in Porous Media
Before implementing any chemical enhanced oil recovery project at the field, it is very important to carry out a feasibility study, which is impossible without determining their effectiveness under laboratory conditions.
The task of laboratory research is to determine all the parameters of surfactant and polymer solutions, necessary for further analytical evaluation and reservoir simulation. It is necessary to conduct laboratory experiments to perform technical and economic assessment of the chemical EORs implementation. One of the most important issues here is to determine the amount of reagent held in the pore space of the reservoir.
The retention parameter determines how much reagent needs to be injected to achieve the required displacement efficiency. It directly affects reagent consumption and economic efficiency.
This paper discusses various methods for determining the amount of reagent retained in the reservoir; it can be surfactant species or a polymer. To solve the problem of reducing the time for the experimental part, an algorithm of an experiment was developed, which makes it possible to determine the retention parameters in a shorter time and with less labor. This method was tested and showed its effectiveness in the course of a technical and economic study on the possibility of implementing polymer flooding for a field in Eastern Siberia.
As a result of the experiments, the relationships between the surfactant or polymer retention and their concentration, and also between permeability and the amount of reagent adsorbed were found. The effect of salinity on the retention parameter was determined, the fact of desorption for both surfactants and polymers was revealed. Inaccessible pore volume for polymer was determined.