Ayesha Alam, Shahab Ud-Din Khan, Muhammad Abdullah, R. Khan, Muhammad Ilyas, Khurram Saleem Chaudri, Ahmad Ali, Sehrish Shakir, Z. Rehman, Shahzaib Zahid, R. Ali
{"title":"巴基斯坦球形托卡马克导流器设计优化","authors":"Ayesha Alam, Shahab Ud-Din Khan, Muhammad Abdullah, R. Khan, Muhammad Ilyas, Khurram Saleem Chaudri, Ahmad Ali, Sehrish Shakir, Z. Rehman, Shahzaib Zahid, R. Ali","doi":"10.1515/kern-2022-0105","DOIUrl":null,"url":null,"abstract":"Abstract Handling the power deposition, reducing erosion effects, and plasma configuration are the key factors in the design of a divertor. The design of Pakistan Spherical Tokamak (PST) is based on double-null divertor configuration with actively cooled graphite targets at outer/inner strike point and peak heat flux range capacity of 0.1–0.3 MW/m2. The configuration of PST divertor module is designed with mock-up (used flat type tiles on baffles and dome) and cassette (support PFC and cooling channels) technology. Helium-cooled stage and water-cooled stage are two options for divertor. Therefore, one part of this research is focused on water-cooling system for the divertor. This paper presents the divertor design for PST with cooling channel and material analysis of the divertor, which is carried out in three phases. In the first phase, the plasma edge temperature, density, particle velocity, input power, heat flux, and surface temperature are estimated. In second phase, physics and engineering design of divertor system has been performed. In the third phase, COMSOL simulation has been performed to analyses the material properties, surface temperature rise (∆T °C) at stable heat flux, and thermal hydraulic system for the divertor. It is found from the analysis that the specific heat flux of 0.3 MW/m2 up to 3 s is the safe zone limit. The R & D work ratifies that manufacturing and installation processes are plausible for the proposed divertor design. This design is able to meet the requirement of PST. However, increasing time or specific heat flux beyond these limits would require redesigning of the cooling channel.","PeriodicalId":17787,"journal":{"name":"Kerntechnik","volume":"82 1","pages":"437 - 445"},"PeriodicalIF":0.4000,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of divertor design for Pakistan spherical tokamak\",\"authors\":\"Ayesha Alam, Shahab Ud-Din Khan, Muhammad Abdullah, R. Khan, Muhammad Ilyas, Khurram Saleem Chaudri, Ahmad Ali, Sehrish Shakir, Z. Rehman, Shahzaib Zahid, R. Ali\",\"doi\":\"10.1515/kern-2022-0105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Handling the power deposition, reducing erosion effects, and plasma configuration are the key factors in the design of a divertor. The design of Pakistan Spherical Tokamak (PST) is based on double-null divertor configuration with actively cooled graphite targets at outer/inner strike point and peak heat flux range capacity of 0.1–0.3 MW/m2. The configuration of PST divertor module is designed with mock-up (used flat type tiles on baffles and dome) and cassette (support PFC and cooling channels) technology. Helium-cooled stage and water-cooled stage are two options for divertor. Therefore, one part of this research is focused on water-cooling system for the divertor. This paper presents the divertor design for PST with cooling channel and material analysis of the divertor, which is carried out in three phases. In the first phase, the plasma edge temperature, density, particle velocity, input power, heat flux, and surface temperature are estimated. In second phase, physics and engineering design of divertor system has been performed. In the third phase, COMSOL simulation has been performed to analyses the material properties, surface temperature rise (∆T °C) at stable heat flux, and thermal hydraulic system for the divertor. It is found from the analysis that the specific heat flux of 0.3 MW/m2 up to 3 s is the safe zone limit. The R & D work ratifies that manufacturing and installation processes are plausible for the proposed divertor design. This design is able to meet the requirement of PST. However, increasing time or specific heat flux beyond these limits would require redesigning of the cooling channel.\",\"PeriodicalId\":17787,\"journal\":{\"name\":\"Kerntechnik\",\"volume\":\"82 1\",\"pages\":\"437 - 445\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2023-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kerntechnik\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/kern-2022-0105\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kerntechnik","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/kern-2022-0105","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Optimization of divertor design for Pakistan spherical tokamak
Abstract Handling the power deposition, reducing erosion effects, and plasma configuration are the key factors in the design of a divertor. The design of Pakistan Spherical Tokamak (PST) is based on double-null divertor configuration with actively cooled graphite targets at outer/inner strike point and peak heat flux range capacity of 0.1–0.3 MW/m2. The configuration of PST divertor module is designed with mock-up (used flat type tiles on baffles and dome) and cassette (support PFC and cooling channels) technology. Helium-cooled stage and water-cooled stage are two options for divertor. Therefore, one part of this research is focused on water-cooling system for the divertor. This paper presents the divertor design for PST with cooling channel and material analysis of the divertor, which is carried out in three phases. In the first phase, the plasma edge temperature, density, particle velocity, input power, heat flux, and surface temperature are estimated. In second phase, physics and engineering design of divertor system has been performed. In the third phase, COMSOL simulation has been performed to analyses the material properties, surface temperature rise (∆T °C) at stable heat flux, and thermal hydraulic system for the divertor. It is found from the analysis that the specific heat flux of 0.3 MW/m2 up to 3 s is the safe zone limit. The R & D work ratifies that manufacturing and installation processes are plausible for the proposed divertor design. This design is able to meet the requirement of PST. However, increasing time or specific heat flux beyond these limits would require redesigning of the cooling channel.
期刊介绍:
Kerntechnik is an independent journal for nuclear engineering (including design, operation, safety and economics of nuclear power stations, research reactors and simulators), energy systems, radiation (ionizing radiation in industry, medicine and research) and radiological protection (biological effects of ionizing radiation, the system of protection for occupational, medical and public exposures, the assessment of doses, operational protection and safety programs, management of radioactive wastes, decommissioning and regulatory requirements).