{"title":"考虑多孔矩阵变换的吸附过程数学建模","authors":"M. Kravchenko, M. I. Ivlev, K.D. Pantelei","doi":"10.26907/2541-7746.2021.2.128-142","DOIUrl":null,"url":null,"abstract":"The paper addresses the results of the polymer flooding process hydrodynamic modeling considering changes in the reservoir properties of the porous matrix and the fluids properties. Application of a multiphase filtration mathematical model requires the system closure considering the data of oil displacement with a specific type of polymer. A method for processing the results of the experiment on core samples with displacement process modeling, considering the real-time transformation of the pore size distribution curve during polymer adsorption, is suggested. Based on the hydrodynamic calculations, we estimate the dependence of the rate of the adsorption process on the concentration of the polymer solution, the rate of pumping of the surfactant through the sample, the processing time, and the current thickness of the polymer film formed for the specific compositions and structure of the sample used. A comparison of the simulation results with the data of dynamic experiments on oil displacement with Gum Arabic polymer solution showed a good correlation of the calculated and experimental data, which confirms the possibility of using a hydropercolation approach to predict the oil recovery coefficient when using various polymer substances at specific fields.","PeriodicalId":41863,"journal":{"name":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","volume":"119 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Modeling of Sorption Processes Considering the Transformation of the Porous Matrix\",\"authors\":\"M. Kravchenko, M. I. Ivlev, K.D. Pantelei\",\"doi\":\"10.26907/2541-7746.2021.2.128-142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the results of the polymer flooding process hydrodynamic modeling considering changes in the reservoir properties of the porous matrix and the fluids properties. Application of a multiphase filtration mathematical model requires the system closure considering the data of oil displacement with a specific type of polymer. A method for processing the results of the experiment on core samples with displacement process modeling, considering the real-time transformation of the pore size distribution curve during polymer adsorption, is suggested. Based on the hydrodynamic calculations, we estimate the dependence of the rate of the adsorption process on the concentration of the polymer solution, the rate of pumping of the surfactant through the sample, the processing time, and the current thickness of the polymer film formed for the specific compositions and structure of the sample used. A comparison of the simulation results with the data of dynamic experiments on oil displacement with Gum Arabic polymer solution showed a good correlation of the calculated and experimental data, which confirms the possibility of using a hydropercolation approach to predict the oil recovery coefficient when using various polymer substances at specific fields.\",\"PeriodicalId\":41863,\"journal\":{\"name\":\"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki\",\"volume\":\"119 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26907/2541-7746.2021.2.128-142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uchenye Zapiski Kazanskogo Universiteta-Seriya Fiziko-Matematicheskie Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26907/2541-7746.2021.2.128-142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Mathematical Modeling of Sorption Processes Considering the Transformation of the Porous Matrix
The paper addresses the results of the polymer flooding process hydrodynamic modeling considering changes in the reservoir properties of the porous matrix and the fluids properties. Application of a multiphase filtration mathematical model requires the system closure considering the data of oil displacement with a specific type of polymer. A method for processing the results of the experiment on core samples with displacement process modeling, considering the real-time transformation of the pore size distribution curve during polymer adsorption, is suggested. Based on the hydrodynamic calculations, we estimate the dependence of the rate of the adsorption process on the concentration of the polymer solution, the rate of pumping of the surfactant through the sample, the processing time, and the current thickness of the polymer film formed for the specific compositions and structure of the sample used. A comparison of the simulation results with the data of dynamic experiments on oil displacement with Gum Arabic polymer solution showed a good correlation of the calculated and experimental data, which confirms the possibility of using a hydropercolation approach to predict the oil recovery coefficient when using various polymer substances at specific fields.