{"title":"约束势下一维输运方程解的相混合","authors":"S. Chaturvedi, J. Luk","doi":"10.3934/krm.2022002","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>Consider the linear transport equation in 1D under an external confining potential <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Phi $\\end{document}</tex-math></inline-formula>:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{equation*} {\\partial}_t f + v {\\partial}_x f - {\\partial}_x \\Phi {\\partial}_v f = 0. \\end{equation*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>For <inline-formula><tex-math id=\"M2\">\\begin{document}$ \\Phi = \\frac {x^2}2 + \\frac { \\varepsilon x^4}2 $\\end{document}</tex-math></inline-formula> (with <inline-formula><tex-math id=\"M3\">\\begin{document}$ \\varepsilon >0 $\\end{document}</tex-math></inline-formula> small), we prove phase mixing and quantitative decay estimates for <inline-formula><tex-math id=\"M4\">\\begin{document}$ {\\partial}_t \\varphi : = - \\Delta^{-1} \\int_{ \\mathbb{R}} {\\partial}_t f \\, \\mathrm{d} v $\\end{document}</tex-math></inline-formula>, with an inverse polynomial decay rate <inline-formula><tex-math id=\"M5\">\\begin{document}$ O({\\langle} t{\\rangle}^{-2}) $\\end{document}</tex-math></inline-formula>. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in <inline-formula><tex-math id=\"M6\">\\begin{document}$ 1 $\\end{document}</tex-math></inline-formula>D under the external potential <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\Phi $\\end{document}</tex-math></inline-formula>.</p>","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Phase mixing for solutions to 1D transport equation in a confining potential\",\"authors\":\"S. Chaturvedi, J. Luk\",\"doi\":\"10.3934/krm.2022002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>Consider the linear transport equation in 1D under an external confining potential <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\Phi $\\\\end{document}</tex-math></inline-formula>:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{equation*} {\\\\partial}_t f + v {\\\\partial}_x f - {\\\\partial}_x \\\\Phi {\\\\partial}_v f = 0. \\\\end{equation*} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>For <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ \\\\Phi = \\\\frac {x^2}2 + \\\\frac { \\\\varepsilon x^4}2 $\\\\end{document}</tex-math></inline-formula> (with <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ \\\\varepsilon >0 $\\\\end{document}</tex-math></inline-formula> small), we prove phase mixing and quantitative decay estimates for <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ {\\\\partial}_t \\\\varphi : = - \\\\Delta^{-1} \\\\int_{ \\\\mathbb{R}} {\\\\partial}_t f \\\\, \\\\mathrm{d} v $\\\\end{document}</tex-math></inline-formula>, with an inverse polynomial decay rate <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$ O({\\\\langle} t{\\\\rangle}^{-2}) $\\\\end{document}</tex-math></inline-formula>. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in <inline-formula><tex-math id=\\\"M6\\\">\\\\begin{document}$ 1 $\\\\end{document}</tex-math></inline-formula>D under the external potential <inline-formula><tex-math id=\\\"M7\\\">\\\\begin{document}$ \\\\Phi $\\\\end{document}</tex-math></inline-formula>.</p>\",\"PeriodicalId\":49942,\"journal\":{\"name\":\"Kinetic and Related Models\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinetic and Related Models\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/krm.2022002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/krm.2022002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
摘要
Consider the linear transport equation in 1D under an external confining potential \begin{document}$ \Phi $\end{document}: \begin{document}$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $\end{document} For \begin{document}$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $\end{document} (with \begin{document}$ \varepsilon >0 $\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $\end{document}, with an inverse polynomial decay rate \begin{document}$ O({\langle} t{\rangle}^{-2}) $\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $\end{document}D under the external potential \begin{document}$ \Phi $\end{document}.
Phase mixing for solutions to 1D transport equation in a confining potential
Consider the linear transport equation in 1D under an external confining potential \begin{document}$ \Phi $\end{document}:
\begin{document}$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $\end{document}
For \begin{document}$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $\end{document} (with \begin{document}$ \varepsilon >0 $\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $\end{document}, with an inverse polynomial decay rate \begin{document}$ O({\langle} t{\rangle}^{-2}) $\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $\end{document}D under the external potential \begin{document}$ \Phi $\end{document}.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.